Computational Fluid Dynamics Modelling of Gas Flow Dynamics in Large Longwall Goaf Areas

The Australasian Institute of Mining and Metallurgy
R Balusu C Claassen
Organization:
The Australasian Institute of Mining and Metallurgy
Pages:
11
File Size:
1875 KB
Publication Date:
Sep 26, 2011

Abstract

Computational fluid dynamics (CFD) models have been developed based upon field data collected from a longwall mine in New South Wales, Australia to study the behaviour of goaf gas flow in both active and sealed goaf areas. A base CFD model was built to represent the goaf situations when the active longwall retreats near the finish-off line. Results from the base model were calibrated and compared against field goaf gas monitoring data. The base model was then used to carry out parametric studies to investigate a number of operational scenarios and their impact on goaf gas behaviour. CFD modelling results indicate that the overall goaf gas flow pattern changes as the operating longwall retreats towards finish-off line. In all cases, oxygen penetration into the active goaf remains high, reaching 15 per cent or higher, even at some 800 m behind the longwall face.The modelling results also indicated that it would be difficult for early detection of an active goaf heating (on the maingate side) based upon CO readings in the return airflow, as the main stream of the gaseous product will be flowing into the sealed deep goafs in adjacent longwall (LW) panels. Monitoring points (such as tube bundles and bag sampling points) should be selected at deep seated seals along the active goaf so that abnormal CO or C2H6 readings can be picked up for early detection and location of potential heating spots; goaf inertisation can be better achieved by injecting inert gas such as nitrogen at deeper points (>200 m) behind the operating longwall; the injection of in-seam drainage methane into the goaf areas will only have a limited impact on goaf inertisation as much of the injected methane will migrate towards deep and higher parts of the goaf due to its buoyancy effect.
Citation

APA: R Balusu C Claassen  (2011)  Computational Fluid Dynamics Modelling of Gas Flow Dynamics in Large Longwall Goaf Areas

MLA: R Balusu C Claassen Computational Fluid Dynamics Modelling of Gas Flow Dynamics in Large Longwall Goaf Areas. The Australasian Institute of Mining and Metallurgy, 2011.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account