Development of a Blast-Induced Vibration Prediction Model Using an Artificial Neural Network

- Organization:
- The Southern African Institute of Mining and Metallurgy
- Pages:
- 14
- File Size:
- 673 KB
- Publication Date:
- Feb 1, 2019
Abstract
"In an opencast mine explosives are used for fragmentation of rock. Inefficient use of explosive energy in an opencast operation produces excessive ground vibration, which is measured by peak particle velocity (PPV). To mitigate ground vibration, it is essential to develop a model to predict PPV. At present empirical models are used. These models are based on only a few input variables, hence they fail to take into account the effects of the myriad factors that cause ground vibration. Due to lack of explicit knowledge about the complex mine blasting system the scope of application of mathematical and statistical modeling techniques is limited. The artificial neural network (ANN) technique is a learning algorithm that can remove some of these limitations and can be applied to predict PPV. In this paper an ANN model is developed for prediction of blast vibration using 248 data records collected from three coal mines with diverse geomining conditions. The correlation coefficient between measured PPV and model output was found to be 0.96 and the average error percentage 11.85. The ANN model output was compared with the output of three empirical models that are widely used for prediction of PPV. The correlation coefficient between the PPV predicted by an empirical model and measured PPV data was 0.63 and the relative error percentage 38.47. This result demonstrates the superiority of the ANN model compared to empirical blast models. By using site-specific structural discontinuities as input the model performance can be further improved. Sensitivity analysis and 3D plotting were used to gain further knowledge about blast-induced ground vibration. IntroductionIn an opencast coal mine explosives are used for fragmentation of coal and overburden. If the explosive energy is not fully utilized it causes blast-induced ground vibration, which may damage nearby structures. Ground vibration is expressed as peak particle velocity (PPV). During different stages of mine planning and operation, it is necessary to use a ground vibration prediction model for blasthole design. Selection of the modelling technique is crucial. Mathematical and statistical modelling techniques have limited application because of the lack of explicit knowledge about the complex mine blasting system. Vogiatzi (2002) highlighted the problem of multicollinearity in case of statistical modeling techniques. Mutalib et al. (2013) stated that mathematical models are unable to capture the nonlinear relationship between several blasting-related parameters due to the complexity of the model input data. However, the difficulty involved in modelling complex blast vibration problems can be removed by adopting an alternative soft computing modelling approach. One of the soft computing techniques is the artificial neural network (ANN). Ragam and Nimaje (2018) developed an ANN model for predicting PPV using six input variables. Kosti et al. (2013) stated that the conventional predictors fail to provide acceptable prediction accuracy. They showed that a neural network model with four mine blast parameters as input could make significantly more accurate on-site predictions. Sayadi et al., (2013), using a database from Teheran Cement Company limestone mines, found that a neural network resulted in maximum accuracy and minimum error. Khandelwal and Singh (2009) developed an ANN model using 150 data records from an Indian coal mine with site-specific rock characteristics and geomining setting. Khandewal and Singh (2007) built a ground vibration prediction model for a magnesite mine using four prediction variables with 20 data records. Kamali and Ataei (2010) predicted PPV in the structure of the Karoun III power plant and dam using an ANN. El Hafiz et al. (2010) evaluated ground vibration predictors using data from a single-station seismograph at a limestone quarry in Egypt."
Citation
APA:
(2019) Development of a Blast-Induced Vibration Prediction Model Using an Artificial Neural NetworkMLA: Development of a Blast-Induced Vibration Prediction Model Using an Artificial Neural Network. The Southern African Institute of Mining and Metallurgy, 2019.