Development of Procedures for Safe Working in Hot Conditions

Society for Mining, Metallurgy & Exploration
M. J. Howes C. A. Nixon
Organization:
Society for Mining, Metallurgy & Exploration
Pages:
7
File Size:
518 KB
Publication Date:
Jan 1, 1997

Abstract

INTRODUCTION A safe heat stress control strategy for an underground mine has three elements: Application of an environmental measure which reflects physiological strain with sufficient accuracy for the range of conditions encountered underground. Acceptance of a functional relationship between the environ- mental measure and human performance which is used to optimise the environmental conditions achievable with either ventilation or ventilation and refrigeration. A management control strategy based on the environmental measure which is designed to ensure that work in environments where excessive physiological strain may occur is prevented and corrective action is initiated. The environmental measure that reflects physiological strain is the link between the three elements and, since the turn of the century, the discussion of the merits of various indices has been prolific. One problem in selecting a suitable measure or index is the ease with which it can be physically obtained relative to accurately reflecting the physiological strain. For example, wet bulb temperature is simple to measure and, for a particular mining sys- tem, it may adequately represent physiological strain, however, it would not necessarily provide the same relatively safe measure in a different mining system. The acceptance of a measure which can be universally applied has been confounded by both development and predisposition. That is not to say that there is only one "correct" measure and all others are unsuitable. It is self evident that if the application of a particular index has resulted in adequate control, then that mea- sure is correct for that situation. However, an understanding of the limitations is necessary to ensure that adequate control is maintained as mining conditions change. Almost 100 years after the question of heat stress in mines started to be dealt with in a collective manner, an analysis of the available information is leading towards a general strategy to control this problem. In the paper, the developments in heat stress assessment are briefly examined and followed since the earliest published observations on the effect of heat in mines (Haldane, 1905), efforts to determine a relationship between an environmental measure and human performance are reviewed and summarised and the benefits of control strategies such as acclimatisation and shortened shifts are discussed as they relate to Mount Isa Mines. The results of testing the prototype air cooling power instrument are discussed and a heat stress control strategy outlined. HEAT STRESS AND AIR COOLING POWER The operation of the human engine is analogous to other engines where the conversion of chemical energy from the oxidation of fuel to useful mechanical energy is not 100% efficient. In a diesel engine it is about 33% and in a human engine less than 20% resulting in at least five times as much heat produced by the meta- bolic process as useful work done. Metabolic energy production is related to the rate at which oxygen is consumed and is about 340 W for each litre of oxygen per minute. Using measured oxygen consumption and an average body surface area of 2.0 m2, the approximate metabolic energy production associated with different mining tasks is (Morrison et al. 1968):- • Rest, 50 W/m2 • Light work, 75 to 125 W/m2 (machine, LHD or drill jumbo operators) • Medium work, 125 to 175 W/m2 (airleg drilling, light construction work) • Hard work, 175 to 275 W/m2 (barring down, building bulkheads and timbering) • Very hard work, over 275 W/m2 (shovelling rock) Heat balance is achieved when the rate of producing heat (the metabolic heat production rate) is equal to the rate at which the body can reject heat mainly through radiation, convection and evaporation. Heat exchange between the lungs and the air in- haled and exhaled is normally less than 5% of the total and there- fore usually ignored. Any heat not rejected to the surroundings will cause an increase in body core temperature. Since heat stress is related to the balance between the body and the surrounding thermal environment, the main parameters required to be known when determining acceptable conditions are those associated with the heat production and transfer mechanisms. These can be summarised as follows: Metabolic heat production rates (M - W) Skin surface area (A3) (and effects of clothing) Dry bulb temperature (t[ ]) Radiant temperature (t[ ]) Air velocity (V) Air pressure (P) Air vapour pressure (e [ ]) The rate of heat transfer to or from the environment depends on the equilibrium skin temperature t, and the sweat rate S,. These in turn depend on the response of the body to the imposed heat stress and the effect of thermoregulation (Stewart, 1981). Thermoregulation The body contains temperature sensitive structures which send impulses to the brain at a rate depending on the temperature. Both hot and cold signals can be differentiated and the thermoregulatory response ahivated according to which signal pre- dominates. If "cold" signals are dominant, body heat loss is re-
Citation

APA: M. J. Howes C. A. Nixon  (1997)  Development of Procedures for Safe Working in Hot Conditions

MLA: M. J. Howes C. A. Nixon Development of Procedures for Safe Working in Hot Conditions. Society for Mining, Metallurgy & Exploration, 1997.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account