Diesel Vs. Electric Haulage

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 244 KB
- Publication Date:
- Jan 1, 1982
Abstract
Our continuous search for underground productivity improvements has been brought about by the diminishing ore grades in existing underground mines. The need for more efficient mining methods is a result of the economic problems facing our industry today, and this has caused us to evaluate underground haulage methods which have traditionally been the "bottleneck" in the flow of material from the ore in the natural state to the surface processing facility of any underground mining operation. Small improvements in the face haulage systems have yielded much greater benefits as they relate to overall mine productivity so it's only natural that we are all concerned with the best method of moving ore from the face to the main line haulage. In a recent paper titled "Underground Haulage Trucks - Gaining Momentum Worldwide", Richard A. Thomas concludes that the use of trucks to haul ores in underground mines is on the increase spurred by the convergence of a number of technology advances and economic realities. Perhaps the most important stimulus for the growth of trackless haulage is the high degree of haulage flexibility in underground operations. On the economic side, the demand for higher productivity from underground mines has resulted in larger physical dimensions of haulage roads, that is, higher backs and wider drifts to provide more room for high capacity haulage units. In the process of determining the most effective type of equipment for haulage, the power source must be a major consideration. For the purpose of this paper, we will limit the comparison to rubber-tired trackless haulage vehicles and not try to make a comparison between rubber-tired haulage, continuous haulage systems and rail-mounted haulage. Cost is perhaps the only really measurable factor when making a comparison between electric and diesel haulage. You will find that some costs will be very well defined in absolute terms. In other areas of comparison, cost can be fairly well estimated, and yet in still others, the costs are totally arbitrary. Let's take a look at some of the cost considerations. (Figure 1) first of all, is the initial cost of the equipment. This capital cost quite often is a determining factor in the type of haulage vehicle to be selected, yet this initial cost is perhaps the most insignificant of all costs when evaluating an operation over the long term. Of much greater concern, is the cost of maintenance. This cost will often run three times the original capital investment during the life of a single piece of haulage equipment. This factor can include rebuild to extend the life of the original capital investment, but certainly includes the labor and materials necessary, plus the inventory to keep the equipment in good repair. Perhaps one cost which is now playing an even greater role in the rubber-tired haulage operation, is the cost of fuel. Conoco has recently come up with some rough estimates which indicate that diesel fuel will cost an average of three times the equivalent kilowatt output in direct electric power. Diesel fuel is almost twice the cost of stored electric power. (This of course relates to the efficiencies of charging and recovery of power from lead acid storage cells.) These particular figures of course will vary from one area to another but I think that there is enough significance here to certainly warrant the further study of fuel costs for each particular area or mine. Another cost is breakdown expense. This must be treated differently from maintenance costs because a potentially larger expense is involved, more than just parts and labor. Now we have to deal with the cost of lost production time, which can have a much greater overall effect. Mine plan economics are another cost consideration where we can't make a comparison without looking at specifics. Here you must look at the movement of power centers vs. the flexibility and freedom of movement of vehicles. The determination must be made as to what types of equipment will fit into any predetermined mine plan and if a change in the planned roadway dimensions for the mine plan itself would be more economical so that more efficient type of equipment could be utilized. Finally, two of the most important aspects to be considered with potential ramifications far beyond what we have mentioned previously, is the cost of health and safety, which is really the cost of meeting current and future government regulations, reasonable or otherwise. And of course, when making any consideration here it is impossible to come up with anything more than an educated guess on the cost of meeting the new regulations. Now let's take a look at some of the advantages of diesel vehicles as well as advantages offered by electric vehicles, both battery and cable powered versions (Figure 2). Much of the data used in this comparison is based on experience with three vehicles manufactured by Jeffrey Mining Machinery Division, Dresser Industries. Jeffrey manufactures all three types, each with approximately a 15-ton capacity, even though few of these Jeffrey vehicles are used in uranium mining operations. Much of our experience comes from the 4114 diesel powered RAMCAR which is a 4-wheel drive, articulated steering,vehicle powered by a Caterpillar 3306NA engine and using a powershift transmission. This will be compared with the performance of the Jeffrey 404H battery powered RAMCAR with articulated steering which utilizes a separate 35 HP DC drive motor on each of two wheels with solid-state speed controls, and the final comparison will be made on the Jeffrey 4015 cable-reel shuttle car which is powered by two 60 HP constant
Citation
APA:
(1982) Diesel Vs. Electric HaulageMLA: Diesel Vs. Electric Haulage. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1982.