Economics Of Pacific Rim Coal

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 10
- File Size:
- 458 KB
- Publication Date:
- Jan 1, 1982
Abstract
Like most minerals, coal is inherently a demand-limited commodity. The very sedimentary nature of its occurrence implies greater availability potential than demand. But this situation is overridden by economics among fuels, between coals, and within coal blends. Such considerations make coal forecasting a very hazardous profession indeed. THERMAL COAL If one thought that the lead times involved with a mining project were very long, one has obviously not been exposed to the planning process in the electric generation business - a process seriously confounded by shifts in load growth, environmental pressures, capital intensity, security of fuel sourcing, inter-fuel economics, and so on. But as a general rule, the near-term forecasts for thermal coal can reliably be based on a bottom-up, plant-by-plant analysis. Cement plant conversions can also be reasonably estimated next in order of reliability, although they have a much wider spectrum of coal qualities and fuel sources to choose from with a notably higher tolerance for sulfur and ash. Finally, industrial demand can be assembled from the estimates for conversions by pulp/paper plants, chemical plants, etc. The industrial sector is harder to estimate, since it may involve small boilers or dual-fired units. Assessing demand in the Pacific Rim is relatively a straightforward process in the near term because the major importing countries are all located on the Asian continent with either negligible or very minor (yet stable) indigenous coal production, (itself often operated on a subsidized basis). Furthermore, all imports are seaborne. These major importers are Japan, Korea, Taiwan, and Hong Kong with Thailand, Singapore, and Malaysia up-and-coming consumers. The suppliers to this market all have substantial reserves to back up decades of exports to these countries. Australia, the US, Canada, South Africa, China, and the USSR dominate the supply side. The second oil-shock of 1979/1980 has convinced the importers that reliance on oil can be expensive and eminently interruptible. Thus, they are determined to diversify away from oil' to nuclear and coal for generating electricity and for coal for other purposes where possible. This trend is seen to continue even in the face of the oil glut worldwide and oil-price reductions in early 1982. But the importers are also convinced that reliance on one coal source and, in particular, one infrastructure route for the coal chain from mine to consumer can be equally expensive and interruptible. Strikes in the US and Australia; excessive demurrage at certain ports; relegation of coal to a lower priority on multiple-use railroads in the USSR and China; and concern over escalation on high-infrastructure or high-freight coal chains are among the risks worrying the importers. As a consequence, Pacific Rim thermal coal purchases are being allocated among supplier nations, between ports, and within each country. An example of Japan's shift away from Australia and toward the US and Canada is shown in the estimates in Table 1. But the confidence of the import estimates deteriorates sharply beyond the plant conversion timetables and construction schedules in the near term. If part of the second generation of coal-fired power plants can handle lower-energy coals, the field of suppliers could widen to accept sizeable tonnages from Alaska, Wyoming, Alberta, or New Zealand resources. These supply sources generally have some infrastructure or freight advantage to compensate for their lower quality and to compete on a delivered energy-unit basis. These also offer diversification in sourcing. And the possibility of coal liquefaction in Japan further widens the sourcing network. A great number of Pacific Rim coal forecasts have been generated, especially for Japanese thermal-coal imports which are expected to grow strongly in the 1980's. Since the Japanese themselves have not yet settled their energy policy, the exact numbers are hard to call. Nevertheless, at 50 million tonnes of imports in 1990, Japan would consume 50-60% of the total Asian thermal coal imports as shown on Tables 2 and 6. The next most important consumers are the "island" nations of Korea, Taiwan, and Hong Kong (see Tables 3-5). All three are embarking on power plant developments usually with captive unloading facilities, capable of accepting more than 100,000-dwt vessels. Korea, with no-indigenous bituminous coal, is not especially enamoured with US coals, which are deemed too heavily loaded by freight and infrastructure costs -- up to 70% of the delivered price. Thermal coal contracts are presently split to Australia (70%) and to Canada (30%). Korea Electric Power Co. is already considering second-generation boilers capable of burning lower-quality coals than the present standard. Korea does burn domestic anthracite.
Citation
APA:
(1982) Economics Of Pacific Rim CoalMLA: Economics Of Pacific Rim Coal. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1982.