Material characteristics of Ti-6AL-4V samples additively manufactured using laser-based direct energy deposition

- Organization:
- The Southern African Institute of Mining and Metallurgy
- Pages:
- 10
- File Size:
- 1585 KB
- Publication Date:
- Feb 6, 2023
Abstract
Although additive manufacturing is fast gaining traction in the industrial world as a reputable manufacturing technique to complement traditional mechanical machining, it still has problems such as porosity and
residual stresses in components that give rise to cracking, distortion, and delamination, which are important
issues to resolve in structural load-bearing applications. This research project focused on the characterization of the evolution of residual stresses in Ti-6Al-4V extra-low interstitial (ELI) additive-manufactured test samples. Four square thin-walled tubular samples were deposited on the same baseplate, using the direct
energy deposition laser printing process, to different build heights. The residual stresses were analysed in the as-printed condition by the neutron diffraction technique and correlated to qualitative predictions
obtained using the ANSYS software suite. Good qualitative agreement between the stress measurements and
predictions were observed. Both approaches revealed the existence of large tensile stresses along the laser
track direction at the sections that were built last, i.e., centre of the top layers of the samples. This in addition leads to large tensile stresses at the outer edges (corners) which would have the effect of separating the samples
from the baseplate should the stresses exceed the yield strength of the material. Such extreme conditions did not occur in this study, but the stresses did lead to significant distortion of the baseplate. In general, the microstructures and spatial elemental mapping revealed a strong correlation between the macro-segregation of elemental V and the distribution of the β-phase in the printed parts.
Citation
APA:
(2023) Material characteristics of Ti-6AL-4V samples additively manufactured using laser-based direct energy depositionMLA: Material characteristics of Ti-6AL-4V samples additively manufactured using laser-based direct energy deposition. The Southern African Institute of Mining and Metallurgy, 2023.