Mathematical Modelling Of Heat Transfer In Six-In-Line Electric Furnaces For Sulphide Smelting ? Synopsis

The Southern African Institute of Mining and Metallurgy
Organization:
The Southern African Institute of Mining and Metallurgy
Pages:
16
File Size:
1777 KB
Publication Date:
Jan 1, 2011

Abstract

An efficient and portable mathematical model has been developed for simulating heat transfer in six-in-line slag-resistance-heating electric furnaces for smelting sulphide ores to produce base metals and platinum group metals. This model is a steady-state one relating furnace conditions and performances to various control and input parameters. Some transient effects occurring in electric furnaces are neglected for computation efficiency. This article describes the model development and modelling results. The present model is capable of predicting: (i) temperatures at various locations in a six-in-line furnace, such as slag bath, matte bath, solid charge, freeboard space, freeze lining, cooling water, and air gaps between solid material components, etc. (ii) freeze lining thickness, (iii)smelting rate, and (iv) heat loss rate, etc. A typical feature of the model is that it is easily portable to different application platforms and sufficiently efficient with execution times less than a few seconds. Therefore, it is possible to apply the model for online prediction and control of heat transfer and freeze lining thickness in industrial electric furnaces.
Citation

APA:  (2011)  Mathematical Modelling Of Heat Transfer In Six-In-Line Electric Furnaces For Sulphide Smelting ? Synopsis

MLA: Mathematical Modelling Of Heat Transfer In Six-In-Line Electric Furnaces For Sulphide Smelting ? Synopsis. The Southern African Institute of Mining and Metallurgy, 2011.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account