Metal Recovery from TiCl4 slurry by Evaporation and Acid Leaching

- Organization:
- The Southern African Institute of Mining and Metallurgy
- Pages:
- 6
- File Size:
- 370 KB
- Publication Date:
- May 1, 2019
Abstract
"TiCl4 slurry containing valuable metals is an unavoidable by-product of the titanium ore chlorination process. The recovery of these valuable metals, which include titanium, niobium, tantalum, and aluminum, is an urgent issue to tackle in the titanium industry. The results of this investigation show that the valuable metallic elements can be recovered from the slurry by evaporation in a sealed container and leaching with dilute hydrochloric acid. After evaporation at 200°C for 60 minutes, nearly 99% of the titanium was recovered in the form of TiCl4, which was formed by the reaction of the TiO2 in the slurry with AlCl3. After evaporation, metals like niobium, aluminum, and tantalum remained in the residue. By leaching with 2.1 mol/L HCl at a L/S ratio of 6:1 mL/g at 80°C for 60 minutes, the soluble metals, such as aluminum, iron, and copper were all removed from the residue, and the niobium and tantalum were further enriched in the leach residue. A concentrate containing 53.40 wt% Nb and 5.57 wt% Ta was obtained by washing the leach residue with dilute aqueous ammonia under stirring. A potential waste water purifying agent containing 263.75 g/L AlCl3 was produced by purifying the leaching solution with Al(OH)3 and modified polyacrylamide. IntrodutionTitanium tetrachloride (TiCl4) is an important intermediate in titanium metallurgy that is widely used in the production of titania and titanium sponge (Akhtar, Xiong, and Pratsinis, 1991). In conventional titanium metallurgical processes, high-titanium materials such as synthetic rutile and high-titanium slag are reacted with chlorine to produce TiCl4 in a fluidized-bed furnace. Accompanying elements, such as Al, Nb, and Fe also react with chlorine to form chlorides, which are mixed with gaseous TiCl4 (Anderson, 1917). In the condensation process, gaseous TiCl4 is refrigerated and high-boiling-point chlorides are precipitated in the liquid TiCl4 to form a slurry containing 50~60 wt% TiCl4 (Wang, Xiang, and Wang, 2012).Various methods have been proposed to recover TiCl4 from the slurry, including microwave heating and spray drying (Wang, Xiang, and Wang, 2012, Wang et al., 2010a). To date, the only way to recover the TiCl4 is to return the slurry to the fluidized-bed furnace. However, this causes fluctuations in the temperature in the furnace, resulting in incomplete reaction between titanium-rich materials and chlorine. Therefore, the slurry is often rinsed with water and neutralized by adding lime, which caused serious environmental pollution and wastes a valuable resource (Roy, Bhatt, and Rajagopal, 2003)."
Citation
APA:
(2019) Metal Recovery from TiCl4 slurry by Evaporation and Acid LeachingMLA: Metal Recovery from TiCl4 slurry by Evaporation and Acid Leaching. The Southern African Institute of Mining and Metallurgy, 2019.