Minerals Beneficiation - Solvent Extraction of Chromium III from Sulfate Solutions by a Primary Amine

The American Institute of Mining, Metallurgical, and Petroleum Engineers
D. S. Flett D. W. West
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
1240 KB
Publication Date:
Jan 1, 1971

Abstract

The solvent extraction of chromium 111 has been studied for the system Cr 111, H,SO., H,O/RNH/RNH., xylene, where the primary amine used was Primene JMT. Rate studies have shown that extremely long equilibrium times are required, ranging from 1 hr at 80°C to 20 days at room temperature. Heating the solution prior to extraction increases the rate of extraction. The variation in the amount of Cr 111 extracted is an inverse function of the acidity of the aqueous phase. Thus, the slow rates of extraction appear to be connected with the hydrolysis of the Cr I11 species. Extraction isotherms for the extraction of Cr 111 have been obtained for two sets of experimental conditions, namely at 60°C and for a heat-treated solution cooled to room temperature. The separation of Fe 111 from Cr 111 and Cr 111 from Cu 11 in sulfate solution by extraction with Primene JMT has been studied and shown to be feasible. A survey of the literature relating to the solvent extraction of chromium showed that, although many systems exist for extraction of Cr VI, only a very few reagents have been found to extract Cr 111. The extraction of Cr III by di-(2-ethyl hexyl) phosphoric acid has been reported by Kimura.' A straight-line dependence of slope —2 was observed between log D,, and the log mineral acid concentration at constant extractant concentration. Since the slope of this plot reflects the charge on the ion extracted, it must be concluded that a hydrolyzed species of Cr III is being extracted. Carboxylic acids generally do not form extractable complexes with Cr III but di-isopropyl salicylic acie does extract Cr 111. Simple acid backwashing of the organic phase, however, failed to remove the chromium. Similar difficulty in backwashing was found by Hellwege and Schweitzer8 in the extraction of Cr I11 with acetyl-acetone in chloroform. The extraction of Cr 111 from chloride solutions by alkyl amines has been reported4-' but the maximum amount of extraction achieved in these studies did not exceed 10%: From sulfate solutions, however, Ishimori" has shown that appreciable amounts of Cr I11 were extracted by amines. The amines used were tri-iso-octyl amine, Amberlite LA-1 (a secondary amine, Rohm & Haas) and Primene JMT (primary amine, Rohm & Haas). The efficiency of extraction with regard to amine type was primary>secondary> tertiary. Appreciable extraction of Cr I11 was recorded for Primene JMT as the aqueous phase acidity tended to zero. The major difficulty with Cr I11 in solvent extraction systems stems from the nonlabile nature of the ion in complex formation. This accounts for the slow rate of extraction generally experienced and the difficulty encountered in backwashing the Cr I11 from the organic phase in the case of liquid cation exchangers. Consequently, the possibility of extraction of Cr I11 as a complex anion is attractive since the backwashing problems should be minimized in this way. From published data, it appeared that the extraction of chromium from sulfate solutions of low acidity by primary amines afforded the best chance of success for a useful solvent extraction system for Cr iii This paper presents the results of a study of the extraction of Cr I11 from sulfate solution by Primene JMT and examines the application of such an extraction procedure for the recovery of chromium from liquors containing iron and copper. Experimental Chromium solutions were prepared from chrome alum in sulfuric acid and sodium sulfate so as to maintain a constant concentration of sulfate ion of 1.5 molar. Solutions of Primene JMT were prepared in xylene and the amine equilibrated with sulfuric acid/sodium sul-fate solutions, of the same acidity as the chromium solution, until there was no change in acidity between the initial and final aqueous phases. The solutions of Primene JMT conditioned in this way were then used for the equilibration experiments. Equilibrations at 25°C were carried out in stoppered conical flasks shaken in a thermostat; equilibrations at all other temperatures were carried out in stirred flasks in a thermostat. After equilibration, the phases were separated and analyzed for chromium. In the tests on the rate of extraction, small samples of equal volume of both phases were withdrawn from time to time and the chromium distribution determined. The chromium analyses were carried out either coloi-imetrically using diphenyl carbazide, or volu-metrically using addition of excess standard ferrous ammonium sulfate and back titration of the excess iron with potassium dichromate. The oxidation of Cr 111 to Cr VI in the case of the raffinate solution was effected by boiling with potassium persulfate in the presence of silver nitrate and, for the backwash solution, by boiling with sodium hydroxide and hydrogen peroxide. Results Preliminary experiments indicated that extraction results were effected by the age of the chromium solution, higher distribution coefficients being obtained with solutions which had been allowed to stand for some time. Consequently a stock solution of chrome alum, 10 m moles per 1 Cr I11 in 1.4 M Na,SO,/O.l M &SO,,
Citation

APA: D. S. Flett D. W. West  (1971)  Minerals Beneficiation - Solvent Extraction of Chromium III from Sulfate Solutions by a Primary Amine

MLA: D. S. Flett D. W. West Minerals Beneficiation - Solvent Extraction of Chromium III from Sulfate Solutions by a Primary Amine. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1971.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account