Minerals Beneficiation - Sponge Iron at Anaconda

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 147 KB
- Publication Date:
- Jan 1, 1954
Abstract
SPONGE iron as produced at Anaconda is a fine, -35 mesh, impure product, about 50 pct metallic iron, obtained from the reduction of iron calcine at a temperature of 1850°F by use of coke resulting from slack coal. The metallic iron particles are bulky and spongey and precipitate copper readily and rapidly from a copper sulphate solution. Investigation of the treatment of Greater Butte Project, Kelley, ore at Anaconda early showed the desirability of using sponge iron as a precipitant for the copper in solution resulting from desliming of the ore in a dilute sulphuric acid solution. Anaconda had done considerable work on the production of sponge iron in 1914 for use as a precipitant of copper from leach solutions. Some success and considerable experilence were attained at the time. indicating that, sponge iron might be successfully made by a modification of the process used in 1914, a batch process in which an iron calcine was reduced by means of soft coke, resulting from noncoking coal, in a Bruckner-type revolving horizontal cylindrical furnace widely used 50 years ago. The coke and calcide formed the bed in the Bruckner furnace, which was rotated at about 1 rpm. The bed was brought to a temperature of about 1800°F by means of an oil flame over the surface. Although results were reasonably satisfactory, they did not warrant full development of the process at that time. A good deal of work has been done in the last 50 years on the production of sponge iron. The objective in some cases has been the production of a precipitant for copper from solution, but the bulk of the work has been done for the production of open-hearth steel furnace stock. The production of an open-hearth stock presents two problems rather than one: first, producticon of the sponge iron, and second, what is perhaps of equal difficulty and importance, conversion of the sponge iron into a form suitable for use in the open-hearth furnace. So far as is known to the writer, none of the sponge iron processes tried in the past have proved to be economically feasible. However, Anaconda had a combination of conditions appearing to justify an attempt to produce sponge iron which would serve for the leach-precipitation-float process. It was thought that the process used in 1914, if changed to a continuous one, might work out satisfactorily. The following favorable conditions at Anaconda justified the investigation: 1—A sufficient tonnage of good grade iron calcine resulting from the roasting of a pyrite concentrate in one of the acid plants, at substantially no cost. 2—Reasonably cheap natural gas. 3-—The fact that there was no need for production of a high grade product. 4— The fact that there was no need for obtaining a consistently high reduction of' the iron in calcine. A small revolving Bruckner-type furnace about 2 ft ID by 4 ft long was set up for early pilot work at the research building. This pilot furnace showed that a satisfactory product could be obtained at reasonable cost. It also indicated a marked advantage in preceding the reduction furnace with a furnace of similar size and capacity for preheating and roasting out any residual sulphur from the feed. The small furnace was operated for several months, various details of the process were worked out. and sponge iron was produced to supply a pilot LPF plant which treated 300 lb of Kelley ore pel- hr. Later a second pilot furnace 5 ft in diam and 12 ft long inside was set up at our reverberatory furnace building. This furnace confirmed the data of the small furnace and gave a basis for design of the final plant. At Anaconda a pyrite concentrate, running about 48 pct S, is recovered from copper concentrator tailings by flotation. This concentrate is roasted to sulphur of 3 pct or less at the Chamber acid plant. The iron calcine contains about 57 pct Fe and 18 pct insoluble. The iron calcine feed, as mentioned before, is re-roasted and preheated in a reroast furnace preceding the reduction furnace. Both are of the Bruckner type. The reroasted calcine is fed into the reduction furnace at 800" to 1000°F along with 30 pct slack coal. In the feed end of the furnace the volatile is burned from the slack, giving a soft coke which readily serves for reduction of the iron. Hard metallurgical coke will not serve the purpose. since it does not reduce CO readily at a temperature of 1850°F. All indications are that the actual reduction of the iron is accomplished by carbon monoxide below the surface of the bed, which is 30 in. deep at its center. Apparently there is a constant interchange: Fe²O³ + 3CO = 2Fe - 3CO², CO² + C = 2CO Actually iron oxide is reduced by CO at somewhat lower temperature than the 1850 °F used in the process. but this temperature is necessary to obtain a satisfactory rate of furnace production. The furnace atmosphere is generally reducing, and typical blue carbon monoxide flames satisfactorily cover the bed. Gas flames from four 3-in. Denver Fire Clay Inspirator burners are played directly on the bed, which is slowly cascaded by the 1 rpm of the furnace. An excess of coke is necessary to assure maintenance of good reducing conditions in the furnace bed. Part of this coke is recovered for re-use.
Citation
APA:
(1954) Minerals Beneficiation - Sponge Iron at AnacondaMLA: Minerals Beneficiation - Sponge Iron at Anaconda. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.