Operations Research - Computer Simulation of Bucket Wheel Excavators

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 1970 KB
- Publication Date:
- Jan 1, 1971
Abstract
Application of computers to present-day open-pit mining with bucket wheel excavators (BWE) is discussed. The development of the wheel excavators and their use in mining are discussed along with the necessity for building a computer model of the bucket wheel and the mathematical formulation of the problem. The simulation procedure, testing the model, and test results are summarized. Even though the mining industry in 1966 produced more ore than ever before, current extraction rates are only a fraction of what is expected in the later years of the 20th century. Nearly 90% of all metals and mineral products consumed last year was recovered by open-pit mining. This has placed great pressure on this segment of the industry which has, consequently, resulted in some spectacular developments. With increasing size of projects, the need for increased sophistication of engineering, planning, management, and administration of modern mining installations has never become more apparent. The design of complete systems for the mine and plant that fit the mold of today's business and social environments is undergoing an evolutionary process. Traditional concepts in mine development and operations are being sidestepped in favor of new ideas and principles. As the overburden thickness increases, materials handling presents a major problem to mining companies, especially those concerned with the mass production of ore and waste from low-grade deposits. The profit margin here is likely to be significantly less as to take chances with capital investment. Constant efforts are needed to improve upon productivity if the ore is to be economically mined. The development of vast low-grade deposits and thick overburden deposits calls for better tools to handle the enormous amount of materials. A natural solution to this problem is the use of bucket wheel excavators (BWE), which employ a continuous cutting head to feed the materials handling system. High productivity, versatility, economy of operation, and adaptability to most types of haulage systems combine to make BWE's attractive for large earth-moving operations. "Operating costs are being pushed down by the impact of giant haulage units, by high-speed conveyors, and computerized railroads. Matching all these with the continuous output of BWEs, one can visualize increased production at much lower costs." Historical Background The wheel excavator, which was patented in Germany in 1913, made its first appearance in an open-pit lignite mine in 1920. From this early beginning, however, BWEs were slow coming into practice. Initial developments were dampened by many design problems. From 1936 onward, major developments in design improved the wheel's ability, capacity, and versatility. A literature survey shows that wheel excavators are being used in Australia, Zambia, South Africa, the Congo, India, Indonesia, Czechoslovakia, Russia, Great Britain, Guyana, Yugoslavia, Morocco, Germany, Canada, and the U.S. for mining and loading chalk, lignite, clay, sandstone, phosphate, broken ore of iron, coal, shale, loose and semi-loose rock overburden.' A recent LMG* BWE at work in a German lignite mine weighs 6790 tons with an hourly capacity of 11,000 cu m. Although the BWE has wide applicability, its application to new mining areas poses a problem. Because of the large capital investment involved in BWE application and the narrow profit margins in mining low-grade ores or coal at depth, little margin of error can be tolerated in the selection, design, and operation of these machines. The questions that need to be answered prior to installation of a BWE for a mineable deposit are: 1.) What are the anticipated BWE performance characteristics? 2) Which method of BWE operation is most efficient? Attempts to answer these questions require a thorough knowledge of the mining system and the BWE operation. One approach is the building of a computer-ori-ented simulation model to determine how information and policy create the character of the BWE system under consideration. BWE Operation Modern BWEs generally excavate in blocks. Fig. la shows a BWE working in an established cut. The wheel is positioned to travel on the pit floor in line with the top edge of the old highwall. As it advances, a new highwall is exposed in the direction of excavation. Digging is done by rotating the wheel, swinging it from side to side in long parallel arcs, and "crowding" into the bank, by advancing the entire machine, or by the travel of the digging boom if an automatic crowd is available (Fig. lb). A second way by which the wheel can be advanced into the bank is by the falling cut method. A brief description of each of these methods follows. Cut with a Crowding Machine: At the end of every swing, the digging boom can be extended by the thickness of cut desired and the boom swung back in the reverse direction. Obviously, the thickness of bank excavated does not vary with the boom position; therefore, the slewing motion of the boom is fairly constant for uniform output. The thickness through which the digging boom can be advanced into the bank is theoretically calculated from the formula'
Citation
APA:
(1971) Operations Research - Computer Simulation of Bucket Wheel ExcavatorsMLA: Operations Research - Computer Simulation of Bucket Wheel Excavators. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1971.