Outlook For Oil Shale Development In The Pacific Rim Countries

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 274 KB
- Publication Date:
- Jan 1, 1982
Abstract
This paper covers oil shale resources in those countries that border the Pacific Rim. The major known resources around the Pacific Rim occur in the Western United States, Australia, the People's Republic of China, (PRC) and the Thailand/Burma region. The location of these deposits is shown in Figure 1. In 1965, the U.S. Geological Survey estimated world oil shale deposits of over 4 quadrillion tons having a potential oil yield of over 2 quadrillion barrels. If all this were extracted, it could meet the world's entire energy needs far into the future. However, the Survey also estimated the spent shale waste could cover all of the surface of the world to a depth of about 10 feet. Thus, for this and many other technical and economic reasons, it does not appear to be feasible to develop a large portion of the world's oil shale resources in this century; nor will shale in itself solve our energy problems. Nevertheless, shale oil and other ' synthetic fuels are expected to play an important role in new energy supplies in the longer term. WHAT IS OIL SHALE OR SHALE OIL? The term "oil shale" is sometimes a misnomer, in that the rock is often more of a limestone or siltstone than a shale. The common link between resources termed “oil shale" is that they all contain an insoluble substance cal led kerogen (which is from the Greek words for waxmaking). Kerogen is a form of organic carbon derived from a variety of plants ranging from algae to higher plants. When heated sufficiently, the kerogen generates hydrocarbons called shale oil, a form of synthetic crude oil that in most cases is lower in hydrogen content than conventional crude oil. The amount of oil in oil shale is relatively small --roughly 10 percent (by weight) in the richer shales. To upgrade this synthetic oil to usable products, additional processing is necessary. This brief sketch gives an idea of what this different, but significant, form of hydrocarbon is like. ENVIRONMENTS OF DEPOSITION Most oil shale deposits fall into three environments of sediment deposition: 1ake (called lacustrine), sea (marine) and river (fluvial-deltaic). In each case, the deposition of oil shales took place in quiet water environments where plant life, particularly algal plants, could flourish and, after dying, be deposited in unoxygenated water where the kerogen precursors would be safe from destruction by oxidation. The oil shales that were deposited in large lake basins (lacustrine) have attracted the most attention for development over the years. They often have multiple seams, deposited in a cyclic nature with extensive areal distribution and rapid vertical changes in kerogen content. Grades are moderate to high, ranging from 80 to 200 liters per tonne. Rundle in Australia and the Piceance Creek Basin in Colorado are examples of this type. Both deposits represent large volumes of oil shale in small areas which could provide the large volume of feedstock needed for future commercial operations. The stratigraphic sections of these two deposits feature thick oil shale seams with average grades of 80 - 125 liters/tonne conducive to both open pit, and underground operations. However, the rock strength of the Rundle shale is not sufficient to - support underground mining. On the other hand, the Colorado deposits, being more carbonate in nature, are sufficiently strong to support either type of mining depending on the overburden to ore ratio. These latter types of deposits will likely provide the first target for development of a commercial industry. The marine type is characterized by extensive areal distribution with relatively thin seams. The grades are generally low to moderate, ranging from 50 to 120 liters per tonne. The marine oil shales are common worldwide, and their attractiveness for mining is dependent on the overburden to ore ratio. Because of their widespread areal distribution, their in situ resources can be quite large. The Toolebuc Formation in Central , Queensland, Australia is a good example of this type of deposit being 7-10 meters thick over an extensive area. The Julia Creek deposit with its favorable overburden-to-ore ratio is being studied for possible development. In a fluvial-deltaic environment, there are many small lakes or bogs associated with rivers in which a very pure type of oil shale called torbanite could form. Torbanites are very high grade containing up to 75 percent hydrocarbons. The known occurrences are generally small lenticular deposits associated with coal seams. Even with the high grades, it is not likely that any of the known deposits would warrant commercial development because of their small size. The torbanite deposits in New South Wales, Australia were processed prior to World War I1 near the town of Glen Davis. However, today's known resources of this type are not large enough to warrant a commercial plant.
Citation
APA:
(1982) Outlook For Oil Shale Development In The Pacific Rim CountriesMLA: Outlook For Oil Shale Development In The Pacific Rim Countries. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1982.