Part IV – April 1969 - Papers - Deformation Substructure, Texture, and Fracture in Very Thin Pack-Rolled Metal Foils

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1679 KB
- Publication Date:
- Jan 1, 1970
Abstract
It is possible, by using pack-rolling instead of conventional rolling, to reduce a number of metals to thicknesses of 2µm or less. Such thinfoils are generally made at room temperature without intermediate annealing. In addition, pack-rolled foils fail by developing pinholes at thicknesses near 2µm instead of developing the shear cracks usually observed in cold-rolled ductile metals. This paper presents the results of a general investigation of the deformation substructure and texture developed in copper and iron pack -rolled from 130 to about 2µm thickness. Electron microscopy showed that in both metals a fine (0.2 to 0.5?µ m) deformation subgrain structure formed during pack-rolling; in neither case was this substructure grossly different from substructures formed during conventional rolling. The deformation texture formed in pack-rolled iron was quite similar to usual bcc textures; however, in the case of copper, the cube texture was stable during pack-rolling and the normal copper deformation texture was unstable. It is shown analytically that the constraining pack induced a large hydrostatic pressure in the foils during pack-rolling. The pinhole failure mechanism is attributed to the presence of the large hydrostatic pressure during pack-rolling; this strongly suppressed the growth of shear cracks. The stability of the cube texture in copper is also probably due to the unusuul stress distribution developed during pack-rolling. EXPERIMENTS at several laboratories have shown that very thin foils of the common structural metals and many of the rare earths can be made by "pack-rolling". 1-3 The technique was originally developed to make specimens for nuclear scattering experiments and foils for X-ray filters. It is also useful for making experimental laminar metallic composite bodies and foils thin enough for direct examination by ultra-high voltage electron microscopy without the need for special thinning techniques. Pack-rolling in the present context means a three-layer pack, with the material to be rolled into foil comprising the center layer. The outer two layers, which constrain the foil during reduction, are ordinarily austenitic stainless steel. Typically, a 130 µm (0.005 in.) metal strip can be reduced to a final thickness of 2 µm or less by this process. This is accomplished at room temperature, without intermediate annealing. It has been observed that foils produced by this process do not exhibit at any stage of their reduction the severe work-hardening found in strip rolled by conventional cold-rolling methods. Neither is the failure characteristic the same."' Conventionally cold-rolled ductile metal strip fails by developing shear cracks on planes whose normals nearly bisect the angle between the rolling direction and normal to the rolling plane; these are planes of maximum shear stress. In pack-rolling this mechanism has not been observed; failure occurs by the formation of pinholes on the foil surface (penetrating the foil). If pack-rolling is continued the hole density increases. These differences in behavior imply the existence of appreciably different substructure in pack-rolled foils compared to substructure in conventionally rolled material, or perhaps that the geometry of pack-rolling has an effect on the foil behavior. This paper describes an investigation of deformation substructure and texture in some specimens of pack-rolled copper and iron, and some considerations of the stress distribution in the foils during rolling that result from the geometry of pack-rolling. EXPERIMENTAL DETAILS Three different materials were used for pack-rolling in the present work: soft copper sheet (99.8 pct Cu, 0.03 pct 0, electrolytic tough pitch) and two types of iron, Ferrovac E* and Armco iron. Each was "Crucible Stccl Co. initially in the form of 130 µm annealed strip with grain size ranges of approximately 10 to 40 µm. The initial texture of the copper (determined as noted below) was the normally observed cube type (001)[100]; there was evidence of a small amount of material in the cube-twin orientation reported by Beck and Hu.4 The initial texture of the Ferrovac E was similar to that reported for recrystallized iron by Kurdjumov and sachs,5 who list the principal orientations as {111}<112>, {001}<110> 15degfrom RD and a weak component {112}(110) 15 deg from RD. The starting texture of the Armco iron was not determined. Pack-Rolling Procedure. A four-high mill was used for all specimens. The work roll and backing roll diameters were 1.625 and 5.25 in., respectively. The peripheral roll speed of the work rolls was about 2.5 in. per sec. All foils were initially reduced from 130 to 100 µm by conventional straight rolling and then inserted into a pack, without any intermediate annealing, for further reduction. The pack consisted of an 0.033 in. (838 µm) thick 3 by 6 in. polished sheet of austenitic stainless steel, folded to make a 3 by 3 in. jacket. After folding, the jacket was given a small reduction to close the fold tightly before insertion of the foil. During pack-rolling a constant change in roll spacing was made every third pass. The roll-spacing change corresponded to a 5 pct reduction in thickness for a new pack. This approached a 10 pct reduction when the pack had decreased to about half its original thickness. At this point the deformed pack was discarded and a new one
Citation
APA:
(1970) Part IV – April 1969 - Papers - Deformation Substructure, Texture, and Fracture in Very Thin Pack-Rolled Metal FoilsMLA: Part IV – April 1969 - Papers - Deformation Substructure, Texture, and Fracture in Very Thin Pack-Rolled Metal Foils. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.