Part IX – September 1969 – Papers - Kinetics of Solution of Hydrogen in Liquid Iron Alloys

The American Institute of Mining, Metallurgical, and Petroleum Engineers
William M. Boorstein Robert D. Pehlke
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
14
File Size:
867 KB
Publication Date:
Jan 1, 1970

Abstract

The rates of solution (of hydrogen in liquid pure iron and in several liquid binary iron alloys were meas-ured using a constant volume technique. The rates of absorption and desorption were found to be equal un-der all experimental conditions. increasing concen-trations of S, Si, or Te decrease the rate of hydrogen uptake but additions of Al, B, Cr, Cu, or Ni have no measurable effect up to concentrations normally en-countered in steelmaking practice. No relation ship was found between the effect of an alloying element on the equilibrium solubility of hydrogen in liquid iron and its effect on the solution rate constant. Mathe-rnatical analysis of the data indicates that under the present experimental conditions the rate of reaction of hydrogen with liquid iron is controlled by transport of gas solute atoms in the metal phase. Comparison of the present resuts with data on nitrogen taken un der similar conditions establishes that the hydrody-nurnic conditions which exist near the surface of a metal bath are best approximated mathematically by a surface renewal model for the case of rapid in-ductive stirring and by a boundary layer model for more quiescent melts. HYDROGEN has long been recognized as being a detrimental constituent in steel. If dissolved in the molten metal in excess of its solid solubility, hydro-gen can be evolved during solidification and cause bleeding or porosity in ingots and castings. In the solid metal, lesser amounts play a definite role in causing other defects such as hairline cracks, blisters, and embrittlement. For significant refinements to be made in metallurgical procedures designed to control or eliminate hydrogen from liquid iron or steel dur-ing processing, available equilibrium solubility data must be supplemented with reliable fundamental in-formation pertaining to the kinetic factors involved in the transfer of hydrogen to or from the metal. The scarcity of such information in the literature prompted the present investigation. PREVIOUS RESEARCH Whereas much of the existing data on the solution kinetics of gases such as nitrogen were obtained during the course of thermodynamic investigations, the solu-tion rate of hydrogen has been found too rapid to be accurately determined by conventional solubility meas-urement techniques. Consequently, little work on hy-drogen solution kinetics has been reported in the lit-erature. Carney, Chipman, and crant1 attempted to study the rate of solution and evolution of hydrogen from liquid iron by employing a newly devised sampling method. Although no significant quantitative data could be obtained, it was observed that the rate of solution was approximately equal to the rate of evolution of hy-drogen from the melt. Karnaukov and Morozov2 stud-ied the rate of absorption and Knuppel and Oeters3 the rate of desorption of hydrogen from molten iron by measuring pressure changes with time in a constant volume system. Karnaukov and Morozov determined the hydrogen pressures over their inductively stirred melts with the aid of a McLeod gage and therefore, were forced to work at pressures not in excess of 40 mm of Hg. Their experimental data conformed to a mathematical correlation based on diffusion control: and the rate coefficients calculated on this basis were shown to be independent of the initial absorption pres-sure. These authors reported the solution rate of hy-drogen to be eight-to-ten times higher than they had found for nitrogen in a previous study. They also re-ported that under identical conditions, hydrogen dis-solves somewhat more slowly in iron-columbium alloys than in pure iron. Knuppel and Oeters found that the desorption of hydrogen from pure iron at 1600°C was controlled in all cases investigated by diffusion in the metal bath as long as bubble formation was sup-pressed. This was substantiated by Levin, Kurochkin, and umrikhin4 who studied the kinetics of hydrogen evolution from liquid (technical) iron while applying a vacuum. Salter5 measured the rate of hydrogen ab-sorbed by iron buttons, arc-melted by direct current, as a function of hydrogen partial pressure in a hy-drogen-argon atmosphere. A carrier gas technique was used for analysis of the hydrogen absorbed. The initial rate of absorption was found to increase di-rectly with the square root of the partial pressure of hydrogen. EXPERIMENTAL METHOD Because of the rapid uptake and evolution of hydro-gen by iron-base melts, a constant volume technique was devised in order to obtain meaningful kinetic data over the entire course of the solution process. Apparatus. A schematic view of the experimental apparatus is given in Fig. 1. The hydrogen-liquid iron reaction system consisted of a gas storage bulb con-nected to a meltcontaining reaction chamber through a normally-closed solenoid valve. The gas storage bulb, an inverted 250 ml round-bottomed Pyrex flask was joined to the inlet port of the solenoid valve by a glass-to-metal seal. A more detailed illustration of the reaction chamber is shown in Fig. 2. The design of the Vycor reaction bulb was essentially that de-scribed by Weinstein and Elliott6 with the exception of a shorter, larger diameter gas inlet for this kinetic study. In position, the reaction bulb was closely by an eight-turn coil of water-cooled copper tubing which, when energized by a 400-kc oscillator, provided the inductive heating source. The walls of the bulb were maintained relatively cool by circulating cold water along their outer surface, thus preventing
Citation

APA: William M. Boorstein Robert D. Pehlke  (1970)  Part IX – September 1969 – Papers - Kinetics of Solution of Hydrogen in Liquid Iron Alloys

MLA: William M. Boorstein Robert D. Pehlke Part IX – September 1969 – Papers - Kinetics of Solution of Hydrogen in Liquid Iron Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account