Part IX – September 1969 – Papers - The Dependence of the Texture Transition on Rolling Reduction in CU-AI Alloys

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Y. C. Liu G. A. Alers
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
546 KB
Publication Date:
Jan 1, 1970

Abstract

The effect of rolling reduction on the textures of Cu-A1 alloys has been investigated both by pole figure and by modulus methods. In alloys which exhibit complete copper or brass types of rolling texture, the rolling reduction has little effect on the texture except to increase the degree of preferred orientation. In alloys which exhibit a transition texture, however, increased rolling reduction increases the amount of brass-type texture at the expense of the copper-type texture. The present experimental results show that there is no one-to-one correspondence between the SFE and the rolling texture of fcc metals. Additional data taken from the literature for fcc metals also support this conclusion. On the other hand, the present and previous experimental results are shown to be in good agreement with the suggestion that the texture transition occurs at a critical value for the separation distance between two partial dislocations—a consequence of the "dislocation interaction" hypothesis for texture. formation. This critical separation occurs when the parameter .r/ub is 3.75 x 10'3. From this, a value for the SFE of 39 ergs per sq cm may be deduced for a Cu-2.85 at. pct A1 alloy. ThE correlation between the rolling texture of fcc metals and the stacking fault energy, SFE, was one of the first attempts to relate atomistic properties with the type of rolling texture.' This correlation gives a qualitative explanation for the experimental observation that the addition of alloying elements, which generally lower the SFE, changes the copper-type texture to a brass-type texture. The simplicity of this correlation had led to its general acceptance and even its quantitative use.' However, it is only a correlation and is largely based on descriptive features of pole figures, and on the poorly known SFE values in dilute alloys. Quantitative verification of this phenomenologi-cal correlation is, in fact, completely lacking. One purpose of the present study is to test this correlation. Another atomistic description for the formation of rolling texture is the "dislocation interaction" hypothesis of texture formation.3 In this hypothesis, the factor controlling the type of rolling texture depends on whether or not the separation distance between two partial dislocations exceeds a critical value. Materials having a separation of less than the critical value are supposed to exhibit a copper-type texture while those with a separation above the critical value are supposed to have a brass-type texture. At the critical value, it is expected that the material should show equal amounts of copper- arid brass-type orientations in their textures, i.e., a 50 pct transition texture. The SFE appears in this hypothesis as only one of several factors which determine the separation distance between partial dislocations. It is possible to test the validity of these two concepts by studying the rolling texture as a function of rolling reduction. Since the SFE per se is an intrinsic property of the metal, it should not, by definition, be influenced by local irregularities, such as variable stress conditions. Thus, no change in texture-type is expected to occur with changes in rolling reduction. On the other hand, according to the "dislocation interaction" hypothesis, any factor that effectively influences the separation distance of partial dislocations would be expected to change the rolling texture. Since the separation distance between partial dislocations is known to depend upon local stresses,4-6 it is anticipated that there would be an effect of the degree of reduction on the texture-type. Also, since applied stresses are more likely to increase, rather than to decrease, the separation between partials,4'5 the overall effect would be to increase the amount of material in the brass-type orientations as rolling reduction is increased. Furthermore, this reduction dependence would be most prominent in alloys exhibiting the transition texture since the distance between partials in those alloys is thought to be close to the critical value. Experimental data in the literature is insufficient to distinguish between these two alternatives. Haessner studied the effect of rolling reduction on textures in a series of Ni-Co alloys by means of the X-ray intensity-ratio technique,' and found that while one texture parameter indicated no reduction dependence the other indicated a slight dependence of the rolling texture on reduction in the range of 96 to 99 pct. As has been noticed previously, the intensity-ratio technique is a convenient but controversial method7 because there is no a priori reason to suggest which intensity-ratio would describe the texture most meaningfully. A more quantitative method of describing textures is found in terms of the orientation dependence of Young's modulus. Here, the type of modulus aniso-tropy associated with the copper-type texture is sufficiently different from that observed for the brass-type texture to allow the two types to be easily distinguishable and a quantitative measure of the amount of each can be deduced from the numerical results. This ability to provide quantitative data is particularly valuable when the two textures occur simultaneously in one alloy as is the case for the transition textures. In this paper the modulus method, supplemented by pole figure data, is used to look for an effect of roll: ing reduction the texture. Also by combining the texture measurements with recent determinations of the SFE in Cu-A1 alloys'0'" it should be possible to test for a relationship between the SFE and textures.
Citation

APA: Y. C. Liu G. A. Alers  (1970)  Part IX – September 1969 – Papers - The Dependence of the Texture Transition on Rolling Reduction in CU-AI Alloys

MLA: Y. C. Liu G. A. Alers Part IX – September 1969 – Papers - The Dependence of the Texture Transition on Rolling Reduction in CU-AI Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account