Part VII – July 1969 - Papers - The Mechanical Properties of Some Unidirectionally Solidified Aluminum Alloys Part II: High Temperature Tensile Properties

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 700 KB
- Publication Date:
- Jan 1, 1970
Abstract
The possibility of using unidirectionally solidified, two-phase alloys as an approximation to fiber composite materials is investigated. The short-term me.chanical properties and failure modes of unidirectionully solidified A1 (rich)-Cu alloys containing ap -Proximately 0, 17.5, and 27.7 vol pct of 0 phase 'fibers" are determined at temperatures from 25" to 500" and compared with those obtained for conventionul SAP alloys. In a previous publication,' hereafter referred to as I, the possibility of understanding some of the room-temperature mechanical properties of unidirectionally solidified castings was explored. For Al(rich)-Cu and Al(rich)-Mg two-phase alloys over a substantial range of compositions, the yield and ultimate strengths and common ductility measures were very adequately predicted from the principles of fiber strengthening4 and the analysis of ductility outlined by Gurland and Plateau." The results obtained in I suggest the possibility of using unidirectionally solidified, two-phase alloys to simulate fiber composite materials where the inter-dendritic second phase or constituent acts as the reinforcing material. Recent attempts concerning the fabrication of fiber conlposites have concentrated on producing composites with a good bond between fiber and matrix and with very long fibers so that their maximum contribution to the strength of the composite may be realized. However, these objectives are difficult to attain in practice and present fabrication processes are either extremely laborious or costly.13 The slow, unidirectional solidification of eutectics has received considerable attention as a method for producing composite materials. 5,6 This method can fulfill both of the above objectives but it is currently laborious, expensive, and has the additional disadvantage that the volume fraction of reinforcing phase cannot be easily varied. On the other hand, unidirectionally solidified, two-phase alloys, also with a good bond between the phases, are relatively easy to make and the volume fraction of reinforcing "fibers" can be easily varied by changing the average composition of the alloy. The disadvantage of the cast alloys is that the mechanical effectiveness of the "elongated interdendritic reinforcements" (EIR)* may be reduced due to their rela- tively short lengths, the w factor in Eq. [2] of I. However, if the EIR have a high strength their contribution can be considerable. For composite materials containing discontinuous cylindrical fibers of various lengths the ultimate strength is given by1 where it is assumed that the composite fractures when the fibers fail. In Eq. [I], a, is the stress in the matrix just prior to failure of the composite, Vf is the total volume fraction of fiber reinforcing constituent, Vf(l+) is the volume fraction of fibers whose lengths exceed the critical length, I,, which is defined as the shortest length of fiber in which the stress can build up sufficiently to break the fiber. af is the fracture strength of the fiber material, w is a factor accounting for the discontinuity of those fibers whose lengths exceed I,, 1-/d is the average aspect ratio of those fibers whose lengths are shorter than I,, and t is the shear stress in the matrix at the fiber-matrix interface. The factor w is dependent on the length of the fibers and also on whether deformation of the matrix occurs plastically or elastically. However, for a given length of fiber, w is smaller when elastic deformation of the matrix is assumed.' It is of interest to consider the properties of simple unidirectionally solidified, two-phase alloys at elevated temperatures in view of the possibility of using suitable modifications for high temperature service. Knowledge of the creep behavior of these materials is still rudimentary (although under active investigation) and the present paper concerns itself with short time tensile properties of some alloys similar to those investigated in I (i.e., unidirectionally solidified Al(rich)-Cu alloys). Unidirectionally solidified alloys containing 5.6, 17, and 23 wt pct Cu were tested parallel to the direction of solidification at temperatures from 25" to 500°C. In the present investigation, the alloys were homogenized for 2 days at 535°C giving a matrix of homogeneous a phase (5.2 wt pct Cu) and an interdendritic constituent (EIR) which was completely Q phase (53 wt pct Cu). EXPERIMENTAL Alloys of nominal composition 5.6, 17, and 23 wt pct Cu (containing approximately 0, 17.5, and 27.7 vol pct 8 phase, respectively, after homogenization at 535°C) were prepared by melting 1200 g of A1 (99.99 pct) in a high purity graphite crucible and adding the appropriate amount of freshly cleaned copper chips (99.9 pct). The molten alloy (at 700°C) was poured into a preheated graphite mold (also at 700°C) and the ingot unidirectionally solidified by impinging water on the steel baseplate of the mold. The alloy was degassed immediately
Citation
APA:
(1970) Part VII – July 1969 - Papers - The Mechanical Properties of Some Unidirectionally Solidified Aluminum Alloys Part II: High Temperature Tensile PropertiesMLA: Part VII – July 1969 - Papers - The Mechanical Properties of Some Unidirectionally Solidified Aluminum Alloys Part II: High Temperature Tensile Properties. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.