Part X – October 1969 - Papers - Oxidation Kinetic Studies of Zinc Sulfide Pellets

The American Institute of Mining, Metallurgical, and Petroleum Engineers
K. Natesan W. O. Philbrook
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
451 KB
Publication Date:
Jan 1, 1970

Abstract

The oxidation kinetics of spherical pellets of zinc sulfide made from Santander concentrates were studied using a thermogravimetric technique. The experiments covered a temperature range-. of 740" to 102O°C, 0-N mixtures varying from 20 to LOO pct O2, and pellet diameters between 0.4 and 1.6 cm. Mathematical models were formulated to Predict the reaction rate on the assumption that a single transport or interface reaction step was rate -controlling. Analysis of the data indicated that the process of oxidation was predominantly controlled by transport through the zinc oxide reaction-Product layer. ROASTING processes, which are reactions between solids and gases, are very important because they are employed in the production of a number of basic metals. These processes are highly complicated, and one needs to consider the transport phenomena of heat and mass between the solids and gases in addition to the kinetics of various chemical reactions involved. Because of such complications there is a lack of knowledge concerning the rate-limiting factors, which may strongly depend on temperature, particle size, gas composition, and solid structure. The oxidation of zinc sulfide, which is of commercial importance in zinc production, falls into this class of reactions. The major goal of this work was to elucidate the roles played by different process variables, such as reaction temperature, gas composition, pellet size, and pellet porosity, on the kinetics of oxidation of single pellets of zinc sulfide. Roasting of zinc sulfide single particles has been a subject of both experimental and theoretical investigations.&apos;-&apos; The reaction is exothermic and may be considered to be irreversible. Such a reaction has been found to proceed in a topochemical manner. In other words, as the reaction proceeds, a progressively thicker outer shell of zinc oxide is formed, while the inner core of unreacted sulfide decreases. It has been found experimentally, both in the present work and in the previous investigations,1-9 that the particle retains its original dimensions and the process requires transport of gaseous oxygen across the porous product layer for continued reaction. The reaction may be represented by ZnS(s) + 3/2 O2(g) = ZnO(s) + SO2(g) [1] The solid product considered here is only zinc oxide, since the diffraction patterns of zinc sulfide pellets oxidized partially at &apos;798" and 960°C showed K. NATESAN, Junior Member AIME, formerly St. Joseph Lead Fellow, Department of Metallurgy and Materials Science, Carnegie-Mellon University, Pittsburgh, Pa., is now at Argonne National Laboratory, Argonne, Ill. W. 0. PHILBROOK, Member AIME, is Professor of Metallurgy and Materials Science, Carnegie-Mellon University. This paper is based on a them submitted by K. NATESAN in partial fulfillment of the requirements for the Ph.D. degree in Metallurgy and Materials Science at Carnegie-Mellon University. Manuscript submitted December 2, 1968. EMD lines corresponding to original zinc sulfide and the newly formed zinc oxide. OXIDATION MODEL The generalized model for gaseous oxidation of zinc sulfide is illustrated in Fig. 1. This depicts a partially oxidized sphere of zinc sulfide in a gas stream surrounded by a laminar film of gas. The spherical sample of zinc sulfide of unchanging external radius r0 is suspended in a flowing gas stream of total pressure PT and composition specified by the partial pressures of the individual components. Partial pressures of the gaseous species in the bulk gas phase, at the exterior surface of the pellet, at the ZnS/ZnO interface, and at equilibrium for Reaction [I] are identified by the superscripts b, o, i, and eq, respectively. The overall reaction involves the following ~te~s:&apos;~&apos;~&apos; Step 1. Transfer of reactant gas (oxygen) from the bulk gas stream across the gas boundary layer to the exterior surface of the pellet and the reverse transfer of the product gas (sulfur dioxide). Step 2. Diffusion and bulk flow of oxygen from the pellet surface through the product shell (ZnO) onto the ZnS/ZnO interface and the reverse transfer of sulfur dioxide. Step 3. Chemical reaction at the interface, which results in consumption of oxygen gas and generation of sulfur dioxide gas and heat; at the same time the _________ PARTICLE SURFACE / x^^^^n^X / MOVING INTERFACE core-----/ sJSNxy " /T^T^02 \ V\V$\ ^NWX/ "*/— GAS BOUNDARY x. \\ZnO SHELLV/ / \^ . / &apos; ^ BULK GAS --------N_______ _____,------p£ w \ P« / (f> \ / a \ <i) / <----------------- _(o) ^^--------------(b) °- pso, pso2 ro ri 0 ri ro RADIAL POSITION Fig. 1—Generalized model for oxidation of a sphere of zinc sulfide.
Citation

APA: K. Natesan W. O. Philbrook  (1970)  Part X – October 1969 - Papers - Oxidation Kinetic Studies of Zinc Sulfide Pellets

MLA: K. Natesan W. O. Philbrook Part X – October 1969 - Papers - Oxidation Kinetic Studies of Zinc Sulfide Pellets. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account