Part X – October 1969 - Papers - Residual Structure and Mechanical Properties of Alpha Brass and Stainless Steel Following Deformation by Cold Rolling and Explosive Shock Loading

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 11
- File Size:
- 1120 KB
- Publication Date:
- Jan 1, 1970
Abstract
The mechanical responses and residual defect structures in 70/30 brass and type 304 stainless steel following explosive shock loading and cold reduction by rolling have been studied. A distinct relationship was observed to exist between the residual mechanical properties and micro structures observed by transmission electron microscopy. Shock-loaded brass deformed primarily by the formation of coplanar arrays of dislocations and stacking faults at lower pressures, and twin-faults (deformation twins and €-martensite bundles) at higher pressures (> 200 kbar). The micro -structures of cold-rolled brass were characterized by dense dislocation fields elongated in the rolling direction. Stainless steel was observed to deform by the formation of dense arrays of stacking faults at lower shock pressures and twin-faults at high shock pressures (>200 kbar). Lightly cold-rolled stainless steel deformed similar to low Pressure shock-loaded stainless steel, but transformed to a' martensite in heavily cold-rolled stainless steel. Discontinuous yielding was observed for the heavily cold-rolled stainless steel, and stress reluxution in the weyield region for cold-rolled and shock -loaded stainless steel was interpreted as an indication of the ability of twin-faults and stacking faults to act as effective barriers to dislocation motion. A simple model for the formation of the planar defects and a' martetnsite is presented based on the propagating of Shochley partial and half-partial dislocations. A considerable effort has been expended over the past decade in an attempt to elucidate the response of metallic-crystalline solids to the passage of a high velocity shock wave (e.g., smith,' Dieter,2 and zukas3). While it has been possible to obtain relevant information pertaining to the residual defect structures and mechanical properties, there have been few rigorous attempts to draw a direct comparison between these structures and properties. In addition, numerous investigators have recently observed the occurrence of deformation twinning in shock deformed fcc metals (e.g., Nolder and Thomas,4 and Johari and Thomas5), but little attempt has been made to elucidate the mechanisms of formation of these defects. Comparative data for metals deformed by shock-loading and the same metals deformed by more conventional modes of deformation such as cold-reduction by rolling is also generally lacking. The present investigation therefore has the following objectives: 1) to examine the mechanical properties of some explosively shock loaded and cold-rolled fcc metals of low stacking-fault energy as a function of their residual substructures; 2) to present a simple model for the formation twin-faults and related defect structures in the low stack-ing-fault energy materials of interest (70/30 brass, ySFg= 14 ergs per sq cm; and 304 stainless steel, ySF = 21 ergs per sq cm); 3) to make some deductions with regard to the residual characteristics of dislocation and planar defect substructures in cold rolled and shock loaded 70/30 brass and type 304 stainless steel. In particular, it was desirable to characterize the residual hardening effects of particular deformation substructures. I) EXPERIMENTAL PROCEDURE Sheet samples of 70/30 brass (0.005 and 0.15 in. thick; annealed at 659°C for 2 hr) and type 304 stainless steel (0.007 in. thick; annealed 0.25 hr at 1060°C) of nominal compositions shown in Table I were cold-rolled in one direction only to produce reductions in thickness of 15, 30, 45, 60, and 75 pct in the brass; and 5, 15, 25, 35, and 45 pct in the stainless steel. Identical sheet samples in the annealed (unrolled) state were subjected to plane compressive shock waves to various peak pressures ranging from 0 to 400 kbar in the brass and 0 to 425 kbar in the stainless steel; and with a constant peak pressure duration of approximately 2 microseconds. A detailed description of the shock loading technique has been given previously.6 Tensile specimens 1.0 in. in length and 0.125 in. in width were cut from the cold-rolled sheets (tensile axis parallel to the rolling direction), and the shock-loaded sheet specimens. Stress (load)-strain (elongation) measurements on the tensile specimens were made on a Tinius-Olsen load-compensating tensile tester using a strain rate of 2.7 x 10-3 sec-1. Tensile tests were repeated at least twice, giving essentially the same results. Stress relaxation measurements in the preyield region were also made using an initial strain rate of 5.4 x 10-4 sec-1. In addition to tensile and stress relaxation measurements, Vickers microhardness measurements were made on all samples. A total of 100 microhard-ness readings were obtained for each specimen following a light electropolish to ensure uniform surface conditions for all tests. The hardness averages ob-
Citation
APA:
(1970) Part X – October 1969 - Papers - Residual Structure and Mechanical Properties of Alpha Brass and Stainless Steel Following Deformation by Cold Rolling and Explosive Shock LoadingMLA: Part X – October 1969 - Papers - Residual Structure and Mechanical Properties of Alpha Brass and Stainless Steel Following Deformation by Cold Rolling and Explosive Shock Loading. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.