Reservoir Engineering – Laboratory Research - The Deterioration of Miscible Zones in Porous Media

The American Institute of Mining, Metallurgical, and Petroleum Engineers
John A. Sievert John N. Dew Francis R. Conley
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
2462 KB
Publication Date:

Abstract

A brief review is presented of the past performance of a number of large, thin, highly permeable reservoirs with low dips in the Bolivar Coastal fields of Venezuela. The performance of these reservoirs indicates that the fluids are segregated vertically within the sand section by gravity. With this assumption, equations are developed which describe the performance under pressure maintenance operations. Methods of solving these equations and results of simple example calculations are presented. Example calculations indicate that under pressure maintenance conditions injected gas tends to {tow preferentially along the top of the sands and that encroaching water has a tendency to flow preferentially along the bottom. The expected performance of segregated fluids is discussed and compared with that of fluids which are uniformly distributed in any sand section. INTRODUCTION The field performance of a number of reservoirs described herein indicates that the fluids are segregated vertically within the sand section by the force of gravity. Thus, it was felt that any method used to predict the future performance of these reservoirs should consider the effects of segregation in the sand sections. A study of the available information on some of the reservoirs suggests that increased recoveries may be expected if the reservoir pressure is maintained by either crestal gas injection or flank water injection. To predict future performance of reservoirs under pressure maintenance operations, a method of analysis was needed which would account for segregation of fluids in the sand sections. Several methods of analysis have been developed to take into account the segregation of fluids in the reservoir as a whole1,3 To our knowledge no method considers segregation of the fluids within sand sections in the manner indicated by the past performance of several reservoirs in the Mara-caibo Basin. This paper outlines part of the work done in studying some of these reservoirs and contains a description of their performance characteristics. The analysis presented is restricted to pressure maintenance conditions, since space limitations prevent a full discus- sion of the development of the mathematical relations and the various methods of solving them. Only a sketch of the development of the mathematical relations is given. The various methods of solving these relations are pointed out, but the actual determination of solutions to various problems are omitted except for one example. It is felt that these results may aid in the study of reservoirs outside the Maracaibo Basin. Some concepts on which the present analysis is based are outlined by D. N. Dietz. However, the analysis presented herein includes several factors not considered by Dietz: (1) variations in permeability and in the cross section, (2) various shapes of the cross section, and (3) the production of fluids. Also, the mathematical development presented by Dietz differs considerably from our corresponding analysis. RESERVOIR CHARACTERISTICS The reservoirs under consideration, large and thin, with low dip and high permeability, are large to the extent that they contain from 0.5 to over four billion bbl of oil initially in place. The section thicknesses vary from 100 to 400 ft and the lengths from 10,000 to 40,000 ft. Thus, a length-wise cross section of the producing formation appears to be long and thin. The dip angles vary from 0 to 6 degrees and the average permeabilities vary from 0.5 to over three darcies. The reservoirs contain from 20 to 50 per cent shale inter-laminated with the productive sands. Most shale breaks within the major sands do not correlate from one well to the next, and correlation is often difficult, even between wells drilled from the same location. However, it is often possible to correlate the shale breaks between major sands for some distance. Herein we are concerned with the performance of reservoirs containing oil of gravities over 20" API. Past reservoir performance indicates good pressure communication and, in cases where pressure sinks have developed, large amounts of fluid migration have occurred. Few of the reservoirs have had initial gas caps, but also, few have been found to be highly under-saturated. Due to gravity segregation, secondary gas caps usually form before the pressure has been reduced more than 25 per cent of its initial value. The effect of gravity has not only been apparent on a reservoir-wide basis, but has also caused segregation of the reservoir fluids in productive sections. Proof of this is found from the results of selective well tests, workovers, and electric and various other types of logs. Evidence that
Citation

APA: John A. Sievert John N. Dew Francis R. Conley  Reservoir Engineering – Laboratory Research - The Deterioration of Miscible Zones in Porous Media

MLA: John A. Sievert John N. Dew Francis R. Conley Reservoir Engineering – Laboratory Research - The Deterioration of Miscible Zones in Porous Media. The American Institute of Mining, Metallurgical, and Petroleum Engineers,

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account