Roof Behavior and Support Requirements for The Shield-&Supported Longwall Faces

The American Institute of Mining, Metallurgical, and Petroleum Engineers
S. S. Peng H. S. Chiang D. F. Lu
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
24
File Size:
865 KB
Publication Date:
Jan 1, 1982

Abstract

INTRODUCTION The most important element in a successful lingual mining is a good roof control. The modern longwall mining employs hydraulic powered supports for roof control at the face area. The application of hydrau¬lic powered support requires the knowledge of over¬burden strata behavior for proper selection of sup¬port type and capacity. Failure to do so could lead so serious loss. There are several methods available for determining the required support capacity (1-3). While these methods are simple for application, they do not include the complicated roof behavior observed in longwall mining. As research progresses and operational experience accumulates (4,5), the concept about the designing and selection of powered support improves. The design of a longwall powered support consists of three major phases: 1. structural integrity and stability of the powered support, 2. external loadings induced by the movements of the overburden strata, and 3. interaction between the support, roof and floor. Phase 1 involves structural analysis (5) and full-sized testing (6) of the supports. Its validity is limited by the accuracy of the assumed external loading because of the uncertainty about the actual loading underground. The third phase includes the reaction of the support and the floor to the movements of the overburden strata and vice versa. Among the three phases, the second phase concer¬ning the external loading seems to be the least known because of the complicated behavior of the roof strata. There are many unresolved problems. For example, does the main roof break periodically and cause periodic roof weighting in the face area? If so, are there any rules governing its behavior? How does the roof load on the support canopy! Finally, how can one determine the required support capacity and select a proper type of support to meet a certain roof behavior? In order to answer those questions, underground instrumentation and observations were performed at 4 longwall panels in 3 separate mines for the past two years. This paper summarizes the current findings. PANEL LAYOUTS AND EQUIPMENT EMPLOYED The three mines selected are all located in West Virginia; two in northern and one in southern West Virginia. As shown in Table 1, seam conditions (i.e. seam, depth and thickness) and panel layouts are different among the three mines. The most significant difference in equipment is the face powered supports. Three mines used three different types of shield; 2-leg caliper, 2-leg lemniscate, and 4-leg lemniscate chock-shield. (Fig. 1) UNDERGROUND INSTRUMENTATION AND OBSERVATION PROGRAM Two events were instrumented in each observed longwall face: one was the hydraulic pressure (resistance) of the powered supports and the other was the canopy load distributions. In addition, the gob caving conditions were visually observed and recorded. Leg and Support Resistances One or two automatic Weksler Pressure Recorders were installed at the designated shield support,. In most cases, the daily charts were used to record the pressure variations in both the front or the rear legs (for the 4-leg shield), or in both the leg and the fore-pole ram (for the 2-leg shield). The recorded pressure w a s then converted to load or resistance by multiplying it by the cross-sectional area of the hydraulic leg or canopy ram piston. Fig. 2 shows the typical pressure-recorded charts for the 4-leg and 2-leg shields in a 23-24 hour period. The support resistance is the summation of the resistance in each of all the legs for that support. Generally, the resistance of the fore-pole ram will not be considered in determining the capacity of the support because of its rather small vertical compo¬nent force at the tip of the fore-pole. Canopy Load Distribution External load distribution on the canopy as exer¬ted by the roof was monitored. The measurements employed 12-14 pieces of pressure cells (6-inch square) that were uniformly arranged in two rows on the canopy. After support setting, the pressure changes in the cells were monitored at various stages of the mining (supporting) cycle while the support leg pressures were recorded continuously by the pressure recorders. Based on the calibration chara¬cteristics of each pressure cell as performed in the laboratory before and after each underground test, the cell pressures were converted to actual loadings. From these load measurements the canopy load distri¬butions and the relations between measured canopy loadings and support leg resistances were determined. Accordingly, the supporting efficiency of the shield support can be determined.
Citation

APA: S. S. Peng H. S. Chiang D. F. Lu  (1982)  Roof Behavior and Support Requirements for The Shield-&Supported Longwall Faces

MLA: S. S. Peng H. S. Chiang D. F. Lu Roof Behavior and Support Requirements for The Shield-&Supported Longwall Faces. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1982.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account