Symposium Review and Summary

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 115 KB
- Publication Date:
- Jan 1, 1985
Abstract
Rather than attempting to present a summary of the many and highly varied papers that have been presented at this symposium on sampling and grade control, I will attempt to extract the general philosophy of analysis and approach, and attempt to identify the trend of future developments. First, the term "sampling" is used with its broadest connotations. A sample consists of a representative portion of a larger mass, and must represent the mass not only in the grade of contained metals or minerals, but also in all other respects in terms of mineralogy and mineral quality (1, 5), deleterious materials, recoverability of economic components, physical behavior, geophysical response (I), and even archaeological and environmental aspects (7, 11). The sample must be taken from a locality and in such a manner and quantity that it is representative of the larger rock mass. This calls for complete and accurate geological control and an understanding of the nature and distribution of the contained chemical and physical elements and a record of the effectiveness of the different sampling methods. Second, value of a given mass of ore material is based upon its profitability - the difference between recoverable value and costs to achieve recovery, beneficiation and sale. There is a strong movement in mining geology control toward more complete analysis in determining cutoff grades and in grade control, as illustrated by the kriging of metallurgical recovery factors as well as grade at the Mercur Mine (8). To achieve a "profit- ability factor" as a guide for economic mining practice requires further integration of: 1) the value of contained metal or mineral, 2) percentage recovery of values, 3) dilution of ore with waste rock, 4) addition to, or loss of value as a consequence of by-product materials or deleterious components, 5) cost of producing a saleable product plus mini- mum profit to justify the effort (cutoff), and 6) cost of land restoration (7, 11). All these parameters vary with the rock type, rock structure, mineralogy, depth, geometry, mining and metallurgical methods, but they must be sampled and analyzed if sampling and grade control are to reflect profitability. A wide variety of deposits has been presented at this symposium; each deposit with its own problems and special solutions. Deposits containing high unit-value components, e.g. precious metals and diamonds, present special problems in the obtaining of accurate samples and generally require statistical analysis control methods or may disregard or modify occasional high or occasional low values, based upon experience (12 ) Grade control may be accurate for the long term but may vary for the short term. Bulk sampling is always essential. Deposits containing metals or minerals with low unit value are very sensitive to transport costs, and they are often very sensitive to small amounts of deleterious components or differences in physical or chemical behavior. Problems of sampling and grade control change with the genetic type of deposit, with the stage of deposit development and with the size of the information base. Precious metal epithermal deposits (2, 6, 8), because of rapid vertical zonation and erratic lateral distribution of values, have always been difficult to evaluate and maintain grade control and ore reserves. On the other hand, evaluation and grade control are relatively easy in bulk-low- grade deposits (4, 13). However, these deposits generally have a low margin of profit and are sensitive to mining and beneficiaton costs, price fluctuations and political costs. Industrial mineral deposits (5) often must be evaluated on the basis of their behavior, rather than by chemical analysis. Environmental impact generally increases with the scale of the operation, but certain elements or minerals have especially high impact effects (7, 11). In the exploration phase there is no production control of sampling procedures and careful geological observations are particularly essential. The greatest number of problems is related to the oxidized outcrop where the chemical environment of the ore body has changed and the contained values may have been enriched, depleted or values left unchanged (2, 6). Present evidence suggests that gold values may be very mobile under certain conditions (2, 6) and stable under others. Everything must be sampled in detail. Principal values and by-product or deleterious elements may vary dependent upon their position within the soil profile. Such factors as geomorphic position, erosion rate, vegetation, climate, etc., may affect the interpretation (1, 3). During the development phase it is equally easy to overtest, to have "paralysis by analysis," as to undertest (3, 6). Bulk samplng and testing are
Citation
APA:
(1985) Symposium Review and SummaryMLA: Symposium Review and Summary. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1985.