Technical Notes - Flotation of Organic Slimes in Carbonate Solutions

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 133 KB
- Publication Date:
- Jan 1, 1962
Abstract
Homestake-New Mexico Partners operate a 750-tpd carbonate leach uranium concentrate mill near Grants, N.M. The highly mineralized water available as process water leaves much to be desired. The 628 ppm as CaCO 3 makes the use of raw water very troublesome in pipes and on filter cloths. However, the residual sodium carbonate in the final filter cake going to tails makes an ideal softening agent. To take advantage of this fact, all makeup water used in the mill is first used as tailing slurry dilution water and comes to the mill from the tailings pond. The 5-acre tailings pond serves as a thickener and 100 to 150 gpm of nearly clear solution is decanted to a pump to be returned to the mill. Since this tailings water has small quantities of uranium in the solution an ion exchange scavenger unit was installed to remove as much uranium as possible. The ion exchange raffinate is then used as final filter wash ahead of the tailings slurrying step. In spite of the large settling area this return water is not clean enough for ion exchange feed. The solids present are very fine and composed of approximately 15 pct (by weight) burnable carbonaceous material common to the sandstone uranium ores in the area, 40 pct SiOz plus 45 pct CaC03. Laboratory work showed that this material responds very well to flotation. Before deciding to use flotation, various clarifying systems such as pressure leaf filters, sand filters, and continuous vacuum pre-coat filters, were considered. Each of these could have solved the problem but with much more operating labor, more reagents and greater installation costs than the flotation step. About 100 to 150 gpm of fouled water is fed to two 66-in. Fagergren cells, in series. Reagents used at the beginning were Arquad 2HT75 and Arquad C50, at the rate of about 1% lb per 8-hr shift, or about 0.0053 lb each per ton of ore. This did not completely remove the solids but does an acceptable job. Approximately 75 pct of the slimes are a size that can be caught on a 41-Whatman Paper are removed. Removal of these slimes also allows much better settling of the coarse nonfloatable material. Advantage is also taken of this fact in a small settling tank ahead of precipitation. Removal of this amount of the slimes makes the ion t:xchange feasible. PREGNANT SOLUTION CIRCUIT The carbonate? leach-caustic precipitation method of uranium concertration does not provide for any process purification step ahead of precipitation. Therefore, any fine solids getting into the pregnant solution through the filter cloth show up in the final concentrate. This, of course, lowers the grade, and, at times, the slimy nature of these very fine solids rendered final filtration of the concentrate difficult if not impossible At Homestake-New Mexico Partners a 75-ft thickener was available for gravity clarification of 100 to 120 gpm of this pregnant solution. However this did not sufficiently remove the slimes. Laboratory investigation of the whole range of flocculants that were suggested by literature, salesmen, and friends failed to turn up anything of consequence. A continuous vacuum pre-coat filter would do the job and was investigated. The capital cost and the operating labor and materials made this a last chance choice. Following work done in the metallurgical laboratory on the tailings return water, it was found that some changes in the reagent strengths and combinations made a very definite decrease in the solids in the pregnant solution. Concentrate grade improved about 5 pct anti the final product after drying had an appreciably greater bulk density. Compared to a cost of about 2.2e per ton for pre-coat filter opelation for cleaning just one circuit, flotation costs less than 1.0 per ton of ore for cleaning two circuits. While a pre-coat filter would do a more thorough job, the flotation does all that is required for either circuit. Gravity causes the froth produced to run back into the leach circuit. This does not appear to result in a build-up of objectionable slime. No extra manpower is required; the operators in the separate areas can observe the operation of the cells and mix the small quantities of reagents as needed. Normally the 66-in. Fagergren cell requires 15 hp per cell, but this very dilute slurry needs only 10 hp for both cells. Originally, a combination of the two Arquads mentioned previously served as frothers and promoters. As further testing
Citation
APA:
(1962) Technical Notes - Flotation of Organic Slimes in Carbonate SolutionsMLA: Technical Notes - Flotation of Organic Slimes in Carbonate Solutions. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.