Technical Notes - What Mathematics Courses Should a Mining Engineer Take?

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 655 KB
- Publication Date:
- Jan 1, 1971
Abstract
With the recent advances which have been made in science and technology and the increased use of mathematics in this area, the question of the best mathematics courses for a mining engineer to take is of major importance. The question becomes even more difficult to answer due to the recent increase in the number of different mathematics courses in the last two decades offered by the mathematics departments. Therefore, the National Study of Mathematics Requirements for Scientists and Engineers (NSMRSE) was designed to provide some answers to these questions. Approximately 10,000 scientists and engineers were selected for the Study, These individuals were placed in two categories: (1) The Awards Group, recipients of national honors or awards and those recommended by the members of the Board of Advisors as having national and international reputations in their areas of specialization and (2) The Abstracts Group, persons exceptionally productive in their research, based on the number of journal articles listed in the last five years in the Engineering Index, Scientific and Technological Aerospace Reports, Chemical Abstracts, Biological Abstracts, and the Physics Abstracts. The NSMRSE Course Recommendation Form and the Instruction and Course Content Sheet were constructed with the aid of the Board of Advisors and other consultants. For the Study, 40 courses were selected by the mathematical consultants. In order to make sure that the basic content of the mathematics courses was the same for all respondents, a brief resume of each of the 40 courses was given. The NSMRSE Course Recommendation Form consisted of seven sections. These sections were as follows: Section 1, 38 different specializations; Section 2, orientation of work (applied through theoretical); Section 3, highest degree obtained; Section 4, place of employment (academic, nonacademic); Section 5, administrative capacity (administrative or nonadministrative); Section 6, age groups (five-year intervals). Section 7 contained the 40 courses which were to be marked according to five categories: (1) Course Length, 3 to 36 weeks; (2) Applied-Theoretical Orientation, a five-point scale; (3) Course Level, freshman through graduate; (4) Knowledge of Course; and (5) Use of Course Content in Work. The Analysis The report of the data is based on the replies received from 44 mining engineers. This group was part of the Awards and Abstracts Group for all engineers. The resume of the recommended courses is reported in quintiles (upper fifth to lower fifth), since recommendations of this kind are not precise. The results of the Study are based on recommendations of the most active research men in engineering in the U.S. today; therefore, the reader should realize that these course recommendations represent an upper bound of mathematics requirements for the Ph.D. in both undergraduate and graduate work. Conclusions and Recommendations 1) Mining engineering students who plan to be active research specialists should take all those courses which are "very highly recommended" (80-10070) and "highly recommended" (60-79.9%). Those courses in the upper two quintiles and recommended by most mining engineers are: first-year calculus, third-semester calculus, elementary differential equations, applied statistics, and machine computation. Courses of "moderate recommendation" (40-59.9%) are: vectors, intermediate ordinary differential equations, the first course in partial differential equations, elementary probability, and linear programming. 2) The great majority of mining engineers indicated that they prefer a course which is concerned primarily with applications. Only the standard courses such as first-year college mathematics, calculus, differential equations, and advanced calculus received a recommendation for 50% theory and 50% practice. Therefore, all mathematics courses given to mining engineers should contain many applications and little theory. Engineers in both the applied and the combination (ap-plied-theoretical) groups indicated a definite need for applications in all courses. 3) In general, recommendations were for mathematics courses to be given for short intervals of time such as 3, 6, or 12 weeks. Only the standard courses mentioned previously received the usual one-semester or one-year recommendation. Therefore, it is of value to combine several related courses into a one or two-semester course so that the mining engineering student could acquire important mathematical knowledge at an early date in order to prepare him for his research. 4) There was little use for the newer courses in modern mathematics such as the functional analysis sequence, the modern algebra sequence, and the group theory sequence. In addition, there were uniformly very low recommendations (0-19.9%) for multilinear algebra, complex variables, mathematical logic, special functions, integral equations, approximation theory, analytic mechanics, integral transforms, and geometric algebra. Therefore, these courses should be given a low priority. 5a) Comparisons among mining engineers with different backgrounds showed that the combination ap-plied-theoretical group recommended more mathematics than the applied group. 5b) There was little difference in recommendations between the administrative group and the nonadminis-trative group. 5c) Analysis of age groups showed that those in the lower age groups gave significantly higher recommendations to courses such as the first course in partial dif-
Citation
APA:
(1971) Technical Notes - What Mathematics Courses Should a Mining Engineer Take?MLA: Technical Notes - What Mathematics Courses Should a Mining Engineer Take?. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1971.