Technical Papers and Notes - Institute of Metals Division - Ductility of Silicon at Elevated Temperatures

The American Institute of Mining, Metallurgical, and Petroleum Engineers
D. W. Lillie
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
571 KB
Publication Date:
Jan 1, 1959

Abstract

It has been demonstrated that considerable bend ductility exists in bulk specimens of polycrystalline high-purity silicon. The possibility of hot-forming at 1200°C is suggested. EXCELLENT corrosion resistance in many media and low cross section for absorption of thermal neutrons (0.13 barn) would make silicon of interest to nuclear engineers were it not for extreme brittle-ness and the difficulty of fabrication by any reasonable means. The use of silicon for structural purposes also has been considered in view of its light weight and oxidation resistance. Johnson and Han-sen' have investigated the properties of silicon-base alloys and concluded that there was no way of making pure silicon or silicon-rich alloys ductile at room temperature. In view of reports of appreciable ductility in germanium single crystals above 550°C'." and some plastic deformation in single-crystal silicon above 900oC,' the present investigation was undertaken to define more precisely the limits of high-temperature ductility in pure silicon. After this investigation was begun torsion ductility in both germanium and silicon was reported by Greiner." Through the courtesy of F. H. Horn, a small bar of cast extra high-purity silicon was obtained and small bend specimens were made from it by careful machining and grinding. All of the reported tests results were obtained from samples from this bar (bar No. 1) and one other of similar source (bar No. 2). No complete analysis was obtained but, based on analysis of similar semi-conductor grade material, metallic impurities were under 0.01 pct total. Vacuum-fusion analysis for oxygen showed a value of 0.0018 2 0.0003 pct for the first bar tested and metallographic analysis showed no evidence of a second phase. Bend tests were carried out on an Instron tensile machine using a bend fixture with a 1 -in. span loaded at the center. Supporting and loading bars were 0.250 in. round and the load was applied by downward motion of the pulling crosshead of the machine. Specimen thickness and width were approximately 0.10 in. and % in. respectively. Loading rate was controlled by holding crosshead motion constant at 0.02 ipm. In some cases a smaller specimen was used on a 5/8-in. span with a 0.129-in.-diam loading bar. The entire bend fixture was surrounded by a hinged furnace and all heating was done in air atmosphere. Temperature measurement was made with thermocouples fastened directly to the bend fixture within less than 1 in. from the specimen. Autographic stress-strain curves were recorded during each test, and breaking load, total deflection, and plastic strain could be obtained from these curves. Stress was calculated from the beam formula S = 3PL/2bh2, where P is the load in pounds, L the span in inches, b the specimen width in inches, and h the specimen thickness in inches. This formula is strictly correct only in the elastic range but has been used to calculate a nominal stress for convenience in the plastic range. The stress given is the maximum stress in the specimen. Results The results of the complete series of tests are shown in Table I. The first group of tests (specimens Nos. 1-6) showed the beginning of plastic flow at a test temperature of 900°C, so two additional tests (Nos. 8 and 9) were made at 950°C on small-size specimens from bar No. 2. Specimen No. 8 was tested in the as-machined condition, and No. 9 was heat-treated in hydrogen at 1300°C for 2 hr, cooled to 1200°C and held 1 hr, cooled to 1000°C and held 1 hr, cooled to 900°C and held 1 hr, and finally cooled to a low temperature before removal from the hydrogen. It is apparent that the heat-treatment had a significant effect on yield strength and ductility. In addition, the magnitude of the yield point was conslderably reduced in the heat-treated specimen as is shown m Fig. 1 by tracings of the stress-strain curves. After obtaining a furnace capable of reaching higher temperatures specimens Nos. 10 to 13 were tested at 1100 and 1200°C. Strain rate was increased by up to a factor of 10 to see whether the ductility observed was excessively strain sensitive. Specimen NO. 10, strained at 0.02 ipm and 1100oC, was still bending at a deflection of 0.322 in. when the load rate was increased to 0.2 ipm, resulting in immediate
Citation

APA: D. W. Lillie  (1959)  Technical Papers and Notes - Institute of Metals Division - Ductility of Silicon at Elevated Temperatures

MLA: D. W. Lillie Technical Papers and Notes - Institute of Metals Division - Ductility of Silicon at Elevated Temperatures. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1959.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account