Technical Papers and Notes - Institute of Metals Division - On the Solubility of Iron in Magnesium

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 1
- File Size:
- 354 KB
- Publication Date:
- Jan 1, 1959
Abstract
ALTHOUGH the corrosion resistance of magnesium and its alloys is closely related to iron content, there has been no direct measurement of the solid solubility of iron in magnesium. Bulian and Fahrenhors;1 and Mitchel]2 agree that pure iron or a limited terminal solid solution crystallizes from the Mg-rich liquid. For this reason a magnetic-moment method was selected to estimate that portion of the total iron content which is not in solid solution. Since iron in solid solution in magnesium cannot contribute to ferromagnetism, the difference between chemical and magnetic-iron analyses should yield the solid solubility. By experimentation it was found that the melting of pure sublimed magnesium (99.995 wt pet purity) in Armco-iron crucibles at about 800°C is a convenient way to introduce small amounts of iron. Melts retained 5, 10 and 20 min at 800°C analyzed 0.003,, 0.005,, and 0.018 & 0.001 weight pet Fe, respectively, after being stirred, heated to 850°C, and cast into graphite molds. The as-cast alloys were pickled in acid (dilute HC1 + HNO3), annealed at 600°C for 3 days, scalped on a lathe to remove the pitted surface, pickled again, extruded at about 100°C to 3-mm wire, reannealed 41/2 days at 500°C, and water-quenched. The specimens were again scalped, pickled, and used both for chemical and for magnetic analysis. Most of the precautions described were intended to prevent iron pickup by contact with tools or superficial iron enrichment by volatilization of magnesium during heat-treatment. It is believed that the specimens ultimately used for test were homogeneous and characteristic of phase equilibria at 500°C. Magnetic Analyses A susceptibility apparatus of the Curie type was used for magnetic analyses. Field strengths of up to 10,400 oersteds could be generated. By this method, an analytical balance measures the force of attraction which a calibrated magnetic field exerts on a suspended specimen. The force equation is as follows f/m = M dh/dy where f/m = force per unit mass of sample M = magnetic moment per unit mass dH/dy = magnetic field gradient The dH/dy characteristic of the instrument is determined by the use of a standard palladium sample, and the calibration is made independently for all values of H. Since a large finite field is required to saturate an assembly of ferromagnets, it is necessary to measure the apparent magnetic moment for increasing steps of H until a saturation value is obtained. The percentage of iron in the sample as free ferromagnetic iron may then be computed simply C= 100 (M1/M1) where C = percent content of undissolved iron in sample M1 = saturation magnetic moment of sample per unit mass M1 = saturation magnetic moment of iron per unit mass taken as 217 emu-cm per gm There is no serious difficulty in applying this method except for the unusual magnetic behavior of very fine particles of ferromagnetic substances. It has been found and is the basis for a widely accepted theory that with sufficient subdivision, the magnetic fields required to saturate and the coercive force after saturation rise to exceedingly high values. Recent work on precipitates of Fe and Co from copper solid solutions8 showed that about 5000 oersteds were necessary to approach saturation. The magnetic moments as a function of field strength measured in the present investigation are listed in Table I. Only the 0.018 wt pet Fe alloy yielded a magnetization curve with a fairly well-defined saturation plateau at 3.76x10 -2 emu-cm/ gm. This corresponds to 0.017 & 0.001 wt pet Fe in the alloy. This indicates that the solid solubility must be of the order of 0.001 wt pet Fe. The magnetic-moment data of the other two alloys are badly scattered, indicating that the amount of ferromagnetic iron in these samples is so low that the magnetic forces acting on them cannot be measured accurately by the analytical balance used. Nevertheless, the fact that even the 0.003, wt pet Fe alloy shows ferromagnetism indicates that the solid solubility must be below that value. Acknowledgment This work was sponsored by the Pitman-Dunn Laboratory of Frankford Arsenal, Philadelphia, Pa. The support and permission to publish are gratefully acknowledged. References W. Bulian and E. Fahrenhorst: Zeic. Metallkunde, 1942, vol. 34, pp. 116-170. 2 D. W. Mitchell: AIME Transactions, 1948, vol. 175, pp. 570-578. 3 G. Bate, D. Schofield, and W. Sucksmith: Philosophical Magnsine, 1955, vol. 46, pp. 621-631.
Citation
APA:
(1959) Technical Papers and Notes - Institute of Metals Division - On the Solubility of Iron in MagnesiumMLA: Technical Papers and Notes - Institute of Metals Division - On the Solubility of Iron in Magnesium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1959.