The thermal decomposition kinetics of carbonaceous and ferruginous manganese ores in atmospheric conditions

The Southern African Institute of Mining and Metallurgy
S. A. C. Hockaday F. Dinter Q. G. Reynolds
Organization:
The Southern African Institute of Mining and Metallurgy
Pages:
8
File Size:
1384 KB
Publication Date:
Aug 3, 2023

Abstract

The thermal decomposition of carbonate minerals as pre-treatment before smelting reduces the energy requirement for smelting. It can also make the combustion of fossil fuels for heating unnecassary. Thermal decomposition may become important in reducing greenhouse gas emissions when producing ferromanganese alloys while simultaneously reducing electrical energy demand during smelting. A kinetic reaction rate model for the thermal decomposition of manganese ores is presented, based on published reaction rate kinetics for the decomposition of manganese oxides and calcium carbonate. The model was validated against thermogravimetric data for two carbonaceous manganese ore samples and one ferruginous manganese ore sample. The reaction rate model shows that carbonate minerals in the manganese ores are decomposed at temperatures above 900 °C while pyrolusite is decomposed at temperatures from 450 °C to 500 °C. Mn2O3 decomposes rapidly at 550 °C. Braunite decomposition at temperatures below 1000 °C was negligible. The presence of organic carbon in the samples led to further reduction of the samples during thermal treatment.
Citation

APA: S. A. C. Hockaday F. Dinter Q. G. Reynolds  (2023)  The thermal decomposition kinetics of carbonaceous and ferruginous manganese ores in atmospheric conditions

MLA: S. A. C. Hockaday F. Dinter Q. G. Reynolds The thermal decomposition kinetics of carbonaceous and ferruginous manganese ores in atmospheric conditions. The Southern African Institute of Mining and Metallurgy, 2023.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account