The Use Of Neural Network Analysis Of Diagnostic Leaching Data In Gold Liberation Modelling

The Southern African Institute of Mining and Metallurgy
K. R. P. Petersen
Organization:
The Southern African Institute of Mining and Metallurgy
Pages:
6
File Size:
683 KB
Publication Date:
Jan 1, 2003

Abstract

Paper written on project work carried out in partial fulfilment of M.Sc. Eng.(Metallurgical Engineering) degree The interrelationship between mineral liberation and leaching behaviour of a gold ore is ill defined, mainly due to the complexity of both leaching and mineral liberation. This study presents a neural network approach to modelling the liberation of gold bearing ores. A complete mineralogical analysis of unmilled and milled ores, including gold deportment and gangue content are used as inputs to a self-organizing neural net, which generates order preserving topological maps. The arrangement and shapes of these clusters are coupled to unmilled free gold data to predict gold liberation in milled ores (absolute error: 8.1%). Moreover, the self-organizing maps were diagnostic of the quality of data used, indicating that the relationship between particle size and gangue material content requires further investigation.
Citation

APA: K. R. P. Petersen  (2003)  The Use Of Neural Network Analysis Of Diagnostic Leaching Data In Gold Liberation Modelling

MLA: K. R. P. Petersen The Use Of Neural Network Analysis Of Diagnostic Leaching Data In Gold Liberation Modelling. The Southern African Institute of Mining and Metallurgy, 2003.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account