The Use of the WNETZ 3.1 Ventilation Network Programme Including the Systematic Consideration of the Natural Ventilating Pressure in Mine Ventilation

- Organization:
- Society for Mining, Metallurgy & Exploration
- Pages:
- 6
- File Size:
- 299 KB
- Publication Date:
- Jan 1, 1996
Abstract
INTRODUCTION Under certain circumstances the closure of former mines which are located above a certain flood level can result in problems such as the emanation of detrimental substances after having completed filling and reclamation operations. This especially applies to uranium mines in which the radiation dose could far exceed the dose of natural background radiation. By means of an example of the uranium mining in Germany in the following it will be demonstrated how to cope with this problem. On the basis of comparative investigations in various vein deposits and using ventilation scheme calculations proposals for the optimization of the necessary forced ventilation can be submitted. REPORT ON SITUATION In the period 1946 - 1989 the former Soviet-German joint- stock company "Wismut" developed into the biggest European uranium producer with a total output of about 220.000 t of uranium. A major mineraldeposit district was the deposit of Schlemaf Alberoda in the Saxon Ore Mountains, in which 80.000 t of uranium were produced. Thus it is among the biggest uranium de- posits of the world, from which various other metals were at- tracted for many centuries. The exploitation of the Schlemal Alberoda deposit involved steep veins in regions near the surface as well as depths of 1.800 m. Until 1991 a total excavation space of 40 million m3, which is flooded at present, was produced. With the average increase in the water level of 80 cm per week the final flood level is expected to be reached in the year 2003. The shaft 373 at present still being used for ventilation will be no longer available since the second quarter of 1998 after flooding the -540 m level because it is not connected with the excavation system near the surface. As a study shows, a radiation dose far above the natural back- ground radiation has to be expected for the town of Schlema due to the extensive mining activities near the surface and due to the subsequent displacement with missing depression fo the main mine ventilating fan. An uncontrolled air flow containing radon leaves the open mine excavation due to the effect of the natural ventilating pressure and emanation caused by the barometric pressure drop with atmospheric pressure fluctuations. This mine air with its high-level radioactive equilibrium results in a high radiation dose in buildings (see Figure l). After having switched off the main ventilating fan in order to investigate the effect of the missing depression the increase in radon concentrations amounted up to 700% in various buildings of Schlema. This was partially due to the inversion state of the weather at that time. The high radon concentration has detrimental effects on the health of the population and of the miners working on the further reclamation in regions above the flood level. ANALYSIS OF THE RADON EMANATION RATE EXPECTED Considering the composition of the radon inflow from the mine workings it becomes evident that 80 % of the radon inflow originates from abandoned excavations and only 20 %from open ventilated mine excavations. This fact has to be taken into account for the ventilation after having reached the final state of flooding. After completing ventilation the radiation dose on the surface is mainly due to the radon emanation from excavations close to the surface. Investigations of the Wismut GmbH showed the in- crease in the specific radon emanation rate by a factor of 100 for abandoned excavations as compared to new drivings. One reason is the larger specific surface of abandoned galleries caused by displacements due to mining activities as well as by fall of hanging. Furthermore the radon can enter the gallery through joints, which have subsequently opened by convergences. All these effects result in a larger free surface available for radon diffusion. The large number of drivings in the deposit sections near the surface and the fact that the highest uranium contents are found near the surface as well as the high fracturing are further reasons for higher emanation rates. Considering these facts it can be expected that the radon inflow of 10.000 kBq/s, which refers to an open mine excavation of about 1.4 million m3, represents a minimum. Only by increasing the specific surface, for which a numerical value has still to be determined, this value will increase with certainty. An extensive radon emanation from the residual excavation, which cannot be flooded, can only be prevented by maintaining the ventilation system. The low pressure produced by the fan in the mine openings prevents the emanation of air containing radon due to the effect of the natural ventilating pressure. Without the controlled withdrawal of the radon the population as well as the miners working on the further reclamation in areas above the flood level would be endangered. Therefore the follow-
Citation
APA:
(1996) The Use of the WNETZ 3.1 Ventilation Network Programme Including the Systematic Consideration of the Natural Ventilating Pressure in Mine VentilationMLA: The Use of the WNETZ 3.1 Ventilation Network Programme Including the Systematic Consideration of the Natural Ventilating Pressure in Mine Ventilation. Society for Mining, Metallurgy & Exploration, 1996.