Understanding Aqueous-in-Organic Entrainment in Copper Solvent Extraction

- Organization:
- The Southern African Institute of Mining and Metallurgy
- Pages:
- 7
- File Size:
- 379 KB
- Publication Date:
- Jan 1, 2016
Abstract
"In copper solvent extraction, aqueous-in-organic entrainment results in the carry-over of unwanted species into the electrowinning process with negative cost implications. The need to bleed is increased and the purity of the copper cathode is potentially compromised, depending on the impurities being transferred (Cl, NO3, Fe, Mn). In some cases, entrainment results in elevated levels of manganese in the electrolyte which can cause oxidative conditions to develop and degradation of the organic phase. Degraded organic phase detrimentally affects the physical performance of the copper solvent extraction process, contributing to even higher aqueous-in-organic entrainment. Aqueous entrainment may be minimized through good operating practices and maintenance of the organic quality, but the accurate measurement of entrainment remains a challenge. This paper presents coalescing devices designed to provide more exact measurements of aqueous-in-organic entrainment. IntroductionMany copper solvent extraction (SX) plants experience high aqueous-in-organic (A-in-O) entrainments but are unaware of the extent of the problem because entrainment is often not measured. Aqueous entrainment results in the carry-over of unwanted species into the electrowinning (EW) process and the need to bleed to maintain acceptable concentrations in the electrolyte. The costs associated with the bleed are exacerbated in copper plants where aqueous entrainment levels are high. Other than these direct costs, there are operational consequences of the build-up of certain species in the EW circuit that can have deleterious effects on plant performance.Minimizing aqueous entrainment in operating plants requires an understanding of the factors that affect entrainment levels. Both chemical and operational influences are discussed in this paper. The difficulty of obtaining a representative sample makes it challenging to obtain an accurate measure of aqueous entrainment from a continuous process like SX. Coalescing devices used to get a more precise measurement of A-in-O entrainment are useful to complete mass balances around the SX circuits. Alternatively, mass balances can be used to estimate aqueous entrainments and are helpful as a tool to troubleshoot operations with a view to improving plant performance."
Citation
APA:
(2016) Understanding Aqueous-in-Organic Entrainment in Copper Solvent ExtractionMLA: Understanding Aqueous-in-Organic Entrainment in Copper Solvent Extraction. The Southern African Institute of Mining and Metallurgy, 2016.